Sistemi di Acquisizione Dati

Andrea Ferrero (aferrero@to.infn.it) - University of Torino and I.N.F.N.

Lezioni sui Rivelatori, 26-04-2004

Sommario:

- Struttura e compiti di un moderno DAQ
- Cos'e' il tempo morto di acquisizione e come minimizzarlo
- Il presente: COMPASS, LHC
- Il futuro: un DAQ senza trigger

Data Aquisition systems

- Acquisizione dei dati provenenti dai rivelatori
- Assemblaggio dell'evento globale
- Formattamento dei dati (event header, trigger mask, etc. etc.)
- Registrazione dell'evento o trasmissione a un Central Data Recording (CDR) tramite collegamenti ad alta velocità
- Monitoraggio online dei dati
- Filtraggio online dei dati (trigger di alto livello)

Schema generale di un DAQ

Selezione degli eventi: il trigger

- Ha lo scopo di selezionare gli eventi interessanti
- Il criterio di selezione può essere basato sulla molteplcità di particlelle, la topologia dell'evento, la cinematica, l'energia depositata nei calorimetri, etc. etc.
- Solo i dati corrispondenti agli eventi selezionati dal trigger verranno trasmessi al DAQ e registrati
- Il trigger può essere suddiviso in molti livelii . . .

Livelli di trigger

• Il trigger é un'operazione complessa:

 $\circ\,$ i dati dei rivelatori non sono immediatamente disponibili

- non c'e' tempo per un'analisi completa dell'evento. . .
- \circ . . . e neppure per raccogliere i dati da tutti i rivelatori

• Occorre lavorare per approssimazioni successive:

hadware triggers

- \rightarrow sono veloci
- \rightarrow usano le informazioni di un sottogruppo di rivelatori
- $\rightarrow\,$ la logica e' realizzata in hadware

software triggers

- $\rightarrow\,$ sono realizzati usando programmi e processori
- \rightarrow utilizzano informazioni piu' complete dall'apparato

Un DAQ "minimale"

System Timing Diagram

Il "tempo morto" di acquisizione

- É uno degli elementi più importanti da considerare nel disegno di un DAQ moderno
- Si presenta ogni volta che un determinato step nell'acquisizione richiede una quantità finita di tempo

System Timing Diagram

•) • ! • !				
Detector	50 ns			
Trigger	100 ns			
Digitizer	50 μs conversion time	///////////////////////////////////////		
DAQ		2 μs		
	dead time (62 us)	dead time (62 us)		

• Eventi casuali con frequenza media μ , DAQ con tempo morto T

- Eventi casuali con frequenza media μ , DAQ con tempo morto T
- La probabilità di trovare n eventi nel tempo T e' data da:

$$P(n;\mu,T) = \frac{(\mu T)^n}{n!} e^{-\mu T}$$

- Eventi casuali con frequenza media μ , DAQ con tempo morto T
- La probabilità di trovare n eventi nel tempo T e' data da:

$$P(n;\mu,T) = \frac{(\mu T)^n}{n!} e^{-\mu T}$$

• L'efficienza del DAQ e' data dalla probabilità di non avere NESSUN evento nel tempo T:

 $\epsilon = P(0; \mu, T) = e^{-\mu T}$

- Eventi casuali con frequenza media μ , DAQ con tempo morto T
- La probabilità di trovare n eventi nel tempo T e' data da:

$$P(n;\mu,T) = \frac{(\mu T)^n}{n!} e^{-\mu T}$$

• L'efficienza del DAQ e' data dalla probabilità di non avere NESSUN evento nel tempo T:

$$\epsilon = P(0; \mu, T) = e^{-\mu T}$$

se $\mu = 1/T \rightarrow \epsilon = 37\%$

2/3 degli eventi sono persi a causa del tempo morto!

Minimizzare il tempo morto

• Ridurre il tempo di digitallizzazione (fast ADC)

System Timing Diagram

Minimizzare il tempo morto

- Ridurre il tempo di digitallizzazione (fast ADC)
- Introdurre un buffer di uscita (pipeline)

System Timing Diagram

Un esperimento moderno: COMPASS

Il DAQ di COMPASS

Features:

- Pipelined readout architecture
- Data transfer via optical S-Link
- Buffering of bursts (SPS duty cycle \sim 30%)
- Network eventbuilding (Gigabit Ethernet)
- Central data recording
 - CASTOR HSM, Oracle catalog
- Data rates: 0.9-18 GB/SPS-spill
- \rightarrow Online filter
 - Phase I: 12 eventbuilders, 4ms/evt., factor $\frac{1}{2}$
 - Phase II: filter farm, 100ms/evt., factor $\frac{1}{10}$

Software:

- ALICE DATE for eventbuilding, run control, event sampling, info logging
- PCI DMA driver
- Monitoring DATE + ROOT
- Run Logbook (TCL,PHP,MySQL)
- Frontend DB (MySQL)

Computers & network

- data rate: <60 MB/s, <4.4 TB/giorno a regime
- ricostruzione: \sim 300-700 ms/evt.

Lo stato dell'arte: LHC

L'evento "tipico" in un esperimento di LHC

Higgs -> **4**μ

+30 MinBias

Il trigger in LHC

• Multilivello

- $\circ\,$ LV-1: locale, veloce, HW
- $\circ\,$ LV-2: locale, raffina LV-1
- LV-3: SW, analizza l'evento globale

\circ Fattore totale di riduzione: $10^{13}!$ (40 MHz \rightarrow 100 Hz, 10 PB/s \rightarrow 100 MB/s)

Rate di dati

	Level 1 (kHz)	Event size (MB)	Storage (MB/s)
ATLAS	100	2	100
CMS	100	1	100
<pre></pre>	1	25	1500
◆ LHCb	1000 (LO) 0.1	20

Il futuro: SDAQ @ Panda

High rate DAQ:

- Multiple physics selection during the same data taking
- Easy reconfiguration for different physics with the same detector

solenoi

• Layered filtering with modular algorithms

iron

- Event rates of up to 50 MHz
- Event sizes of up to ≲ 10 kB (or lower rates)

Requirements from Physics:

- Nearly 4π detector
- Efficient trigger (e, μ, K, D, Λ)
- Good PID (γ , e, μ , π , K, p)

PANDA Detector:

- Central solenoid + forward dipole
- Vertex Pixels, straws, MDC
- PbW0₄ ECAL, DIRC, Aerogel RICH
- Pellet or wire targets

Carsten Schwarz, GSI

Architettura del DAQ

Frontend modules:

- Sampling ADC (\sim 100 MHz)
- Time from multiple samples
- Hit detection
- Clusters, energies, rings, tracklets, ...

Network Fabric:

- Buffered links
- Configurable switch cascades

Compute nodes:

- filtering, feature extraction
- multiple FPGAs
- embedded CPU for control

Timing Distribution:

- like COMPASS TCS: clock, time normal
- passive optical network
- very low clock jitter (<50 ps)

Conclusioni

- Il DAQ ha assunto nei moderni esperimenti un'importanza paragonabile ai rivelatori
- Le caratteristiche richieste in termini di rate di trigger e flusso di dati sono ai limiti delle tecnologie moderne
- Una delle possibili direzioni per aumentare le prestazioni dei DAQ e' il campionamento continuo dei segnali dei rivelatori (Panda @ GSI)
- L'evoluzione e' continua:
 - COMPASS: 10-100 kHz FLT rate, 40 MB/s su disco
 - \circ LHC: interazioni a 40 MHz , 100 MB/s su disco
 - PANDA: interazioni a 50 MHz , 100-200 MB/s su disco