

Physics with NA48/1 K_S **Beam** *Congressino di Sezione* 8-1-2004

Marco Clemencic

clemencic@to.infn.it

INFN Torino

Overview

- NA48 Setup
- Data samples
- First observation of $K_S \rightarrow \pi^0 e^+ e^-$
- Status of the study of $\Xi^0 \beta$ -decay

Experimental setup: the beam lines

Experimental setup: collimator

New setup of the collimator region

Experimental setup: the detector

Experimental setup: resolution

LKr e.m. calorimeter

 $\gamma\gamma$ invariant mass in $K_S \rightarrow \pi^0 \pi^0$ candidates

Spectrometer

Data samples

1997 →	$\epsilon'/\epsilon \operatorname{run}(K_L+K_S)$
1998 →	$\epsilon'/\epsilon \operatorname{run}(K_L+K_S)$
1000	$\epsilon'/\epsilon \operatorname{run}(K_L+K_S)$
1999 -	K_S high intensity
2000	K_L only
(no spectr.)	K_S high intensity
2004	$\epsilon'/\epsilon \operatorname{run}(K_L + K_S)$
$2001 \rightarrow$	K_S high intensity
$\begin{array}{ccc} 2001 & \rightarrow \\ \hline 2002 & \rightarrow \end{array}$	K_S high intensity K_S high intensity (NA48/1)

First observation of

 $K_S \rightarrow \pi^0 e^+ e^-$

Motivation: $K_L \rightarrow \pi^0 e^+ e^-$

The $K_L \rightarrow \pi^0 e^+ e^-$ decay has three components:

CP conserving NA48 measurement BR($K_L \rightarrow \pi^0 \gamma \gamma$):

 $\rightarrow BR(K_L \rightarrow \pi^0 e^+ e^-)_{CPcons} = 0.47^{+0.22}_{-0.18} \times 10^{-12}$

Motivation: $K_L \rightarrow \pi^0 e^+ e^-$ (2)

direct CP violating proportional to $Im(\lambda_t)$ $\lambda_t = V_{ts}^* V_{td}$ $\rightarrow BR(K_L \rightarrow \pi^0 e^+ e^-)_{dir} \sim few \times 10^{-12}$ d d S e^{-}

Motivation: $K_L \rightarrow \pi^0 e^+ e^-$ (3)

indirect CP violating

$$\rightarrow \mathrm{BR}(K_L \rightarrow \pi^0 e^+ e^-)_{\mathrm{ind}} = \\ |\epsilon|^2 \left(\frac{\tau_L}{\tau_S}\right) \mathrm{BR}(K_S \rightarrow \pi^0 e^+ e^-)$$

BR($K_S \rightarrow \pi^0 e^+ e^-$) and BR($K_L \rightarrow \pi^0 \gamma \gamma$) determine whether it will be possible to extract Im(λ_t) from a measurement of BR($K_L \rightarrow \pi^0 e^+ e^-$)

Motivation: $K_{L,S} \rightarrow \pi^0 e^+ e^-$

Direct/indirect CP violaring components of $K_L \rightarrow \pi^0 e^+ e^$ interfere

$$BR(K_L \to \pi^0 e^+ e^-)_{CPV} \times 10^{12} \simeq$$

$$15.3a_s^2 - 6.8a_s \left(\frac{Im(\lambda_t)}{10^{-4}}\right) + 2.8 \left(\frac{Im(\lambda_t)}{10^{-4}}\right)^2$$

$$BR(K_S \to \pi^0 e^+ e^-) = 5.2 \times 10^{-9} a_s^2$$

(D'Ambrosio, Ecker, Isidori, Portoles [JHEP 08 (1998) 004])

Form the $K_S \rightarrow \pi^0 e^+ e^-$ decay it is possible to extract $|a_s|$.

■ Rare decay → understand and minimize all possible backgrounds w/o cutting away the signal.

■ Rare decay → understand and minimize all possible backgrounds w/o cutting away the signal.

Blind Analysis strategy signal and control region masked

Analysis

- Rare decay → understand and minimize all possible backgrounds w/o cutting away the signal.
 - Blind Analysis strategy
 - Signal Region:
 - $|m_{\gamma\gamma} m_{\pi^0}| < 2.5 \times \sigma_{m_{\gamma\gamma}}$
 - $|m_{ee\gamma\gamma} m_K| < 2.5 \times \sigma_{m_{ee\gamma\gamma}}$
 - Control Region:
 - $\mathbf{S} \ 3 \times \sigma_{m_{\gamma\gamma}} < |m_{\gamma\gamma} m_{\pi^0}| < 6 \times \sigma_{m_{\gamma\gamma}}$
 - $\mathbf{S} \ 3 \times \sigma_{m_{ee\gamma\gamma}} < |m_{ee\gamma\gamma} m_K| < 6 \times \sigma_{m_{ee\gamma\gamma}}$

signal and control region masked

\bullet K_S decays

•
$$K_S \to \pi^0 \pi^0_D$$

- $K_S \rightarrow \pi^0 \pi^0_{\rm D}$ + conv.
- $K_S \to \pi^0 \pi^0_{\text{DD}}$
- $K_S \to \pi^0 \pi^0 (e^+ e^-)$
- $K_S \to \pi^0_{\mathsf{D}} \pi^0_{\mathsf{D}}$

\bullet K_S decays

•
$$K_S \to \pi^0 \pi^0_D$$

•
$$K_S \rightarrow \pi^0 \pi^0_{\mathsf{D}}$$
 + conv.

•
$$K_S \to \pi^0 \pi^0_{\text{DD}}$$

•
$$K_S \to \pi^0 \pi^0 (e^+ e^-)$$

•
$$K_S \to \pi^0_{\mathsf{D}} \pi^0_{\mathsf{D}}$$

• K_L decays

•
$$K_L \to \pi^0 \pi^+ \pi^-$$

- $K_L \to \pi^0 \pi^\pm e^\mp \nu$
- $K_L \rightarrow ee\gamma$ + brem.
- $K_L \rightarrow e e \gamma \gamma$

- K_S decays
 - $K_S \to \pi^0 \pi^0_D$
 - $K_S \rightarrow \pi^0 \pi^0_{\mathsf{D}}$ + conv.
 - $K_S \to \pi^0 \pi^0_{\text{DD}}$
 - $K_S \to \pi^0 \pi^0 (e^+ e^-)$
 - $K_S \to \pi^0_{\mathsf{D}} \pi^0_{\mathsf{D}}$
- K_L decays
 - $K_L \to \pi^0 \pi^+ \pi^-$
 - $K_L \to \pi^0 \pi^\pm e^\mp \nu$
 - $K_L \rightarrow ee\gamma$ + brem.
 - $K_L \rightarrow e e \gamma \gamma$

- Ξ^0 decays
 - $\Xi^0 \to \Lambda(p\pi^-)\pi^0$
 - $\Xi^0 \to \Lambda(pe\nu)\pi^0$
 - $\Xi^0 \to \Sigma^+(p\pi^0)e\nu$

- K_S decays
 - $K_S \to \pi^0 \pi^0_D$
 - $K_S \rightarrow \pi^0 \pi^0_{\mathsf{D}}$ + conv.
 - $K_S \to \pi^0 \pi^0_{\text{DD}}$
 - $K_S \to \pi^0 \pi^0 (e^+ e^-)$
 - $K_S \to \pi^0_{\mathsf{D}} \pi^0_{\mathsf{D}}$
- K_L decays
 - $K_L \to \pi^0 \pi^+ \pi^-$
 - $K_L \to \pi^0 \pi^\pm e^\mp \nu$
 - $K_L \rightarrow ee\gamma$ + brem.
 - $K_L \rightarrow e e \gamma \gamma$

- Ξ^0 decays
 - $\Xi^0 \to \Lambda(p\pi^-)\pi^0$
 - $\Xi^0 \to \Lambda(pe\nu)\pi^0$
 - $\Xi^0 \to \Sigma^+(p\pi^0) e\nu$
- Overlapping fragments of decays
 - from the same proton interaction
 - from different proton inteactions

Main Backgounds

Source	control region	signal region
$K_S \to \pi^0_D \pi^0_D$	0.03	0.007
$K_L \to e e \gamma \gamma$	0.11	0.075
$(\pi^{\pm}e^{\mp}\nu) + (\pi^{0}\pi^{0}(\pi^{0}))$	0.19	0.069
Total backgound	$0.33\substack{+0.18 \\ -0.11}$	$0.15\substack{+0.05 \\ -0.04}$

7 events in signal region (probability of consistency with bg $\sim 10^{-10}$)

Physics with NA48/1 K_S Beam – p.16/28

7 events in signal region (probability of consistency with bg $\sim 10^{-10}$)

 $BR(K_S \to \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3} (\text{stat}) \pm 2.3 (\text{syst})) \times 10^{-9}$

7 events in signal region (probability of consistency with bg $\sim 10^{-10}$)

 $BR(K_S \to \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3} (\text{stat}) \pm 2.3 (\text{syst})) \times 10^{-9}$ $|a_s| = 1.06^{+0.26}_{-0.21} (\text{stat}) \pm 0.07 (\text{syst})$

Status of $\Xi^0 \beta$ -decay analysis

Physics with NA48/1 K_S Beam – p.17/28

In 1963, Cabibbo explained the differences between the coupling constants of the weak vertices of baryon and strange particles β -decays.

In 1963, Cabibbo explained the differences between the coupling constants of the weak vertices of baryon and strange particles β -decays.

The explanation was extended and translated in terms of three quark families by Kobayashi and Maskawa, with the use of a 3×3 unitary matrix (CKM matrix).

Motivation: CKM matrix

Current measurement of the CKM matrix elements

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \\ \begin{pmatrix} 0.9734(8) & 0.2196(23)K_{e3} \\ 0.2250(27)\text{hyp.} \\ 0.224(16) & 0.996(13) & 0.0412(20) \\ 0.004 \div 0.014 & 0.037 \div 0.044 & 0.94^{+0.31}_{-0.24} \end{pmatrix}$$

Motivation: Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Motivation: Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

but

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9957(19) \qquad (V_{us} \text{ from } K_{e3})$$

Motivation: Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

but

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9957(19) \qquad (V_{us} \text{ from } K_{e3})$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9981(20) \quad (V_{us} \text{ from hyperons})$

Motivation: Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

but

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9957(19) \qquad (V_{us} \text{ from } K_{e3})$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9981(20) \quad (V_{us} \text{ from hyperons})$

 Ξ^0 β -decay has been observed only recently (KTeV) and has a large statistical uncertainty BR = $2.7(4) \times 10^{-4}$

Motivation: Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

but

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9957(19) \qquad (V_{us} \text{ from } K_{e3})$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9981(20) \quad (V_{us} \text{ from hyperons})$

 $\Xi^0 \beta$ -decay has been observed only recently (KTeV) and has a large statistical uncertainty BR = $2.7(4) \times 10^{-4} \rightarrow$ can be improved.

Motivation: Form Factors

The matrix element of a baryon β -decay can be written as

$$\mathcal{M} = \frac{G_F V}{\sqrt{2}} \overline{u_b} (O^V_\mu + O^A_\mu) u_B \overline{u_e} \gamma^\mu (1 + \gamma_5) u_\nu + h.c.$$

with

V : appropriate element of CKM matrix $O_{\mu}^{V} = f_{1}(q^{2})\gamma_{\mu} + \frac{f_{2}(q^{2})}{M_{p}}\sigma_{\mu\nu}q^{\nu} + \frac{f_{3}(q^{2})}{M_{p}}q_{\mu}$ $O_{\mu}^{A} = \left(g_{1}(q^{2})\gamma_{\mu} + \frac{g_{2}(q^{2})}{M_{p}}\sigma_{\mu\nu}q^{\nu} + \frac{g_{3}(q^{2})}{M_{p}}q_{\mu}\right)\gamma_{5}$

 $f_i(q^2)$ and $g_i(q^2)$ are the form factors

Motivation: SU(3) Breaking

The form factors decribe the effect of the strong interaction between the components of the barion in the week vertex.

Motivation: SU(3) Breaking (2)

The values of the form factors of $\Xi^0 \beta$ -decay are predicted by the theory, under the assumption of exact SU(3), to be the same of the neutron β -decay.

Motivation: SU(3) Breaking (2)

The values of the form factors of $\Xi^0 \beta$ -decay are predicted by the theory, under the assumption of exact SU(3), to be the same of the neutron β -decay.

The effects of SU(3) symmetry breaking can be studied by comparing the two decays.

Events Signature

Physics with NA48/1 K_S Beam – p.24/28

~ 4500 $\Xi^0 \beta$ -decays in signal region.

\sim 250000 $\Xi^0 \rightarrow \Lambda \pi^0$ decays in signal region.

Estimated flux: $7.5 \times 10^8 \Xi^0$ decays in the fiducial volume.

Physics with NA48/1 K_S Beam – p.26/28

Work in progress

The analysis of the $\Xi^0 \beta$ -decay is not yet finished.

The analysis of the $\Xi^0 \beta$ -decay is not yet finished.

We have a very preliminar results on the branching ratio.

- The analysis of the $\Xi^0 \beta$ -decay is not yet finished.
- We have a very preliminar results on the branching ratio.
- We will have
- better understanding of the sources of systematic error
- measurement of the polarization of the Ξ⁰s produced
- measurement of the form factors

Work in progress (2)

Other interesting channels

- $K_S \rightarrow \pi^0 \mu^+ \mu^-$ almost done
- $\Xi^0 \to \Sigma^+ \mu \bar{\nu}_\mu$
- $= \bar{\Xi}^0 \to \Sigma^- e^+ \nu_e$
- $\Xi^0 \to \Lambda \gamma$
- $\Xi^0 \to \Lambda \pi^0$, $\Lambda \to p e \bar{\nu}_e$
- ...much more