Francesco Gallo for the Torino BaBar Group: F.Bianchi, M.Bona, F.G., D.Gamba

Exclusive charmless semileptonic B decays and |V_{ub} | measurement in BaBar

Torino, 08/01/2003

Physics Motivations - CKM matrix determination Measurement of |V_{ub}| - Experimental approaches - Inclusive Recoil tecnique - Exclusive $B \rightarrow X_u I v$ decays Conclusions

CKM matrix (I)

08/01/2004

Weak processes with quark flavour change couple the boson vector field to the charged weak V-A current, containing elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix.

$${\cal J}^{m \mu} = \sum_{m i,m j} ar u_{m i} m \gamma^{m \mu} rac{1}{2} (1-m \gamma_5) m V_{m im j} m d_{m j} ~~ igg| egin{pmatrix} d' \ s' \ b' \end{pmatrix} = egin{pmatrix} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{pmatrix}$$

With 3 quark generations there are 4 real indepedent parameters. The presence of an imaginary phase is responsible for CP violation.

Francesco Gallo - BaBar

3

$$\lambda = \sin\theta_{c} \cong 0.22$$

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^{2} & \lambda & A\lambda^{3}\rho - i\eta \\ -\lambda & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + \mathcal{O}(\lambda^{4})$$

CKM Matrix (II)

- The unitarity of CKM matrix implies relations between its elements which can be expressed as "unitary triangles", whose non-zero area accounts for CP violation.
- In 2001 BaBar established \mathcal{L}^{p} in the B sector by measuring sin(2 β).

CKM matrix elements

Total Error V_{xy} Measured value Tecnique (%) V_{ud} 0.9734 ± 0.0008 < 0.1% Nuclear β Decays $|V_{us}|$ 0.2196 ± 0.0026 ~ 1% K_{e3} Decay $(K^{+(0)} \rightarrow \pi^{0(-)} e^+ v_e)$ 0.0036 ± 0.0007 V_{ub}| ~ 20% Charmless SL B Decays $|V_{cd}|$ 0.224 ± 0.016 ~ 7% Charm production with v beams $|V_{cs}|$ 0.996 ± 0.013 ~ 1% Charm-tagged W Decays 0.0412 ± 0.0020 V_{cb} ~ 5% Charmed SL B Decays $|V_{tb}^* V_{td}| = 0.0083 \pm 0.016$ V_{td} $B_d \overline{B}_d$ Mixing _ $|V_{ts}|$ $|V_{td} / V_{ts}| < 0.24$ $B_s \overline{B}_s$ Mixing $|V_{tb}|^2 / \Sigma_{d,s,b} |V_{ty}|^2 = 0.94 \pm 0.31$ $|V_{tb}|$ Semileptonic t Decays 08/01/2004 Francesco Gallo - BaBar 5

PDG 2002

Constraints on the unitary triangle

08/	′01	/20	04

Francesco Gallo - BaBar

6

|V_{ub}| from semileptonic B decays

- $|V_{ub}|$ can be extracted from charmless semileptonic B decays.
- Calculation of the total decay rate using OPE:
 - N. Uraltsev, Int. J. Mod. Phys. A 14, 4641 (1999) [arXiv:hep-ph/9905520]
 - I.I. Bigi, R.D. Dikeman and N. Uraltsev, Eur. Phys. J. C 4, 453 (1998) [arXiv:hep-ph/9706520]

$$\Gamma_{sl}^{b \to u} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2 \left\{ A_0 \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - 2\frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3}\right) \right\}$$

Hadronization effects and Fermi motion must be taken into account.
 Main background is from B→X_cIv events (BR(b→clv) = ~60 x BR(b→ulv)), can be controlled only in limited regions of phase space (enpoint of the lepton spectrum).

b

08/01/2004

Francesco Gallo - BaBar

Experimental approaches

Measure the lepton

- Basic approach for all analysis
- Endpoint of lepton spectrum (p* > 2.3 GeV)
- 10-15% of b \rightarrow u l v phase space accepted
- Shape function information (e.g. from b \rightarrow s γ)

Reconstruct the neutrino kinematics

- Low experimental efficiency (~5%)
- Higher phase space acceptance (20-30%)
- Large background from b \rightarrow c l v and continuum
- Modest v momentum resolution (σ ~0.5GeV)
- Dependence from m_b and resonant states modeling
- Reconstruct the other B...

08/01/2004

Francesco Gallo - BaBar

×10⁴

 $[(\int d\Gamma/dq^2)dq^2]/\Gamma_{tot}$

RECOIL tecnique (I)

- ◆ This analysis uses Y(4S) → BB events in which one B meson is fully reconstructed (B_{reco}) and the semileptonic decay of the recoiling B (B_{recoil}) is identified by the presence of a high energy lepton (e or µ).
- Since there are no missing particles on the B_{reco} side, the rest of the event comes from the B_{recoil}.

Y(4S)

Francesco Gallo - BaBar

 D^*

π

 π_{s}

9

B_{reco}

This is equivalent to having a single B beam!

Brecoil

08/01/2004

Semi-Exclusive B_{reco} reconstruction

Analysis of B_{recoil}

- Brecoil selection and reconstruction of the X system
 - in $B \rightarrow X_u | v$ (in the region $M_x < 1.55 \text{ GeV/c}^2$):
 - One and only one lepton with $p^* > 1$ GeV
 - Correlation between lepton charge and B_{reco} flavour (included correction for B⁰ mixing)
 - M_{miss}^2 < 0.5 GeV²/c⁴
 - Charge conservation: $Q_{tot}=0$
 - Kinematic fit (2-C): improve hadronic mass resolution
- Separate $B \to X_u$ l ν in two samples:
 - Signal enriched (veto on K^{\pm} and K_{s}): used to perform the measurement
 - Signal depleted (no Kaon veto): used as control sample

Extraction of BR($b \rightarrow u l v$)

Inclusive Branching Ratio

|Vub| result

Submitted to PRL hep-ex/0307062

The measured charmless semileptonic branching ratio is:

 $\mathcal{B}(B \to X_u \ell \bar{\nu}) = (2.24 \pm 0.27(stat) \pm 0.26(syst) \pm 0.39(theo))$

• |Vub| can be extracted using the relation: $\tau_b = 1.608 \pm 0.016 \text{ ps} (PDG02)$ $m_b = 4.58 \pm 0.09 \text{ GeV}$

$$|V_{ub}| = 0.00445 \left(\frac{\mathcal{B}(B \to X_u l\nu)}{0.002} \frac{1.55 ps}{\tau_b}\right)^{1/2} \times (1.0 \pm 0.020_{pert} \pm 0.052_{1/m_b^3})$$

The value for |V_{ub}| from the inclusive data sample (in OPE approximation) is:

 $V_{ub}| = (4.62 \pm 0.28(stat) \pm 0.27(syst) \pm 0.40(theo) \pm 0.09(pert) \pm 0.24(1/m_b^3)) \times 10^{-3}$

08/01/2004

Summary of |V_{ub}| measurements

$|V_{ub}|$ from exclusive $B \rightarrow X_u | v$ channels

80

60

40

20

0

Francesco Gallo - BaBar

- Advantages of study of exclusive decays using Recoil Tecnique:
- Reduced Form Factors dependence. 140
- Crossfeed and continuum background highly reduced.
- Event selection and purity can be improved by dedicated cuts for each exclusive channel.
 - Events are selected in M_x windows.

08/01/2004

17

Measurement tecnique

The observed number of events is normalized to the total number of semileptonic decays $B \rightarrow q \mid v (q = u,c)$:

$$R_{x/sl} = \frac{\mathcal{B}(B^{\pm} \to \pi^{0}(\rho^{0}, \omega)\ell\nu)}{\mathcal{B}(b \to q\ell\nu)} = \frac{(N_{excl}^{meas} - BG_{excl})/\epsilon_{sel}^{excl}}{(N_{sl}^{meas} - BG_{sl})} \times \frac{\epsilon_{l}^{sl}\epsilon_{t}^{sl}}{\epsilon_{l}^{excl}\epsilon_{t}^{excl}}$$

- Additional selection criteria are imposed to each particular exclusive decay.
- The number of data events in the M_x signal region, after all analysis cuts, is obtained by an unbinned maximum likelihood fit to m_{ES}.

NSL: lepton cuts

cl_eexc

Francesco Gallo - BaBar

Fit result on data (82 fb⁻¹)

Parameter	$B^{\pm} \to \pi^0 l\nu$	$B^{\pm} ightarrow ho^0 l \nu$	$B^{\pm} \rightarrow \omega l \nu$
N_{excl}^{meas}	7.0 ± 2.6	12.9 ± 3.6	14.5 ± 4.4
BG_{excl}	0.2 ± 0.2	2.5 ± 1.2	3.3 ± 1.4
ϵ^{excl}_{sel}	0.42 ± 0.04	0.31 ± 0.03	0.20 ± 0.02
$N_{sl}^{meas} - BG_{sl}$	19580 ± 230	19580 ± 230	19580 ± 230
$rac{\epsilon_l^{sl}}{\epsilon_l^{excl}}$	0.92 ± 0.06	0.82 ± 0.05	0.76 ± 0.04
$\frac{\tilde{\mathcal{B}}(b \to \pi^{0}(\rho^{0}, \omega)\ell\nu)}{\mathcal{B}(b \to q\ell\nu)} [*10^{-3}]$	$0.76\pm0.30_{stat}$	$1.41\pm0.49_{stat}$	$2.16\pm0.84_{stat}$
$\frac{\mathcal{B}(B^{\pm} \to \pi^0 l\nu)}{\mathcal{B}(B^{\pm} \to X \ell \nu)} =$	$(0.76\pm0.30_s$	$_{tat}\pm 0.07_{MCs}$	$_{tat})10^{-3}$
$rac{\mathcal{B}(B^{\pm} o ho^0 l u \)}{\mathcal{B}(B^{\pm} o X \ell u)} =$	$(1.41\pm0.49_s)$	$_{tat}\pm 0.17_{MCs}$	$_{tat})10^{-3}$
$rac{\mathcal{B}(B^{\pm} \to \omega l u \)}{\mathcal{B}(B^{\pm} \to X \ell u)} =$	$(2.16\pm0.84_s)$	$_{tat}\pm0.31_{MCs}$	$_{tat})10^{-3}$
1/2004	Francesco Gallo - J	BaBar	19

Charmless Exclusive Branching Fractions

Decay	BaBar (*10 ⁻⁴)	BELLE (*10 ⁻⁴)	CLEO (*10 ⁻⁴)
${\sf B}^0 o \pi^{\scriptscriptstyle -} {\sf I}^+ { v}$	-	1.89 ± 0.15 ± 0.30 (2003 - v Reconstruction)	1.33 ± 0.18 ± 0.13 (2003 - v Reconstruction)
$B^+ ightarrow \pi^0 \ l^+ v$	0.78 ± 0.32 ± 0.13 (2003 – Recoil)	-	-
$B^0 \rightarrow \rho^- l^+ \nu$	3.29 ± 0.42 ± 0.79 (2003 - e ⁻ endpoint)	-	2.17 ± 0.34 ± 0.68 (2003 - v Reconstruction)
$B^+ \rightarrow \rho^0 \ I^+ \nu$	0.99 ± 0.37 ± 0.19 (2003 – Recoil)	1.44 ± 0.18 ± 0.23 (2002 - v Reconstruction)	-
$B^+ \rightarrow \omega I^+ \nu$	2.20 ± 0.92 ± 0.57 (2003 – Recoil)	1.4 ± 0.4 ± 0.3 (2003 - v Reconstruction)	-
$B^+ \to \eta \ I^+ \nu$	-	-	0.85 ± 0.31 ± 0.18 (2002 - v Reconstruction)
Other Light Mesons (η' , a_0 , a_1 , b_1 , f_0 , f_1 , h_1 ,)	-	-	-
08/01/2004	Francesco Gallo	o - BaBar	23

Conclusions

- Semi-Exclusive reconstruction and recoil tecnique allowed for a precise inclusive measurement of [Vub].
- Similar tecnique used for exclusive semileptonic decays gives:

$$\begin{cases} \mathcal{B}(B^{+} \to \pi^{0}l^{+}\nu) = (0.78 \pm 0.32_{stat} \pm 0.13_{syst}) \cdot 10^{-4} \\ \mathcal{B}(B^{+} \to \rho^{0}l^{+}\nu) = (0.99 \pm 0.37_{stat} \pm 0.19_{syst}) \cdot 10^{-4} \\ \mathcal{B}(B^{+} \to \omega l^{+}\nu) = (2.20 \pm 0.92_{stat} \pm 0.57_{syst}) \cdot 10^{-4} \end{cases}$$

- Measurements with small number of events but low systematics.
 Increasing luminosity and new theoretical effort can help improving these measurements.
- New tecniques (e.g. B_{reco} Partial Reconstruction) also look promising.

Torino Group future tasks

- Update of $B^+ \rightarrow (\pi^0, \rho^0, \omega) I^+ \nu$ Branching Fractions (with increased luminosity and new theoretical results) expected for summer conferences.
- Study of missing exclusive channels (B^0 and B^+).
- Exploitation of alternative approaches to improve signal efficiency.

Exclusive measurement of |V_{ub}| (end of 2004?)

Selection of B_{reco} candidates

- reso - assig (puri	iving the mi gning the ca ity and yield	indidate to t s)	dates the submode wit	h the highest p	niority 0.4 0.3 0.2
					0.1 - 00
Channel	final pur.> 80%	final pur.> 50%	single mode pur.> 10%	final selection (5.4.2)	
$B^+ ightarrow D^0 X$	19120 ± 170	54120 ± 370	95204 ± 660	100650 ± 640	250- S/cart(S+B)
$B^0 \to D^+ X$	11070 ± 130	25720 ± 260	55830 ± 480	62960 ± 550	200-
$B^+ o D^{*0} X$	18600 ± 170	44270 ± 330	75350 ± 580	82660 ± 640	- ***
$B^0 o D^{*+} X$	20670 ± 170	50300 ± 340	55560 ± 390	46380 ± 310	
Total B ⁺	37720 ± 240	98390 ± 500	170560 ± 880	183310 ± 905	100 -
Total B^0	31740 ± 210	76020 ± 430	111390 ± 620	109340 ± 630	50 -
T-4-1	60460 ± 320	174410+660	281950 + 1080	292650 + 1100	

08/01/2004

Francesco Gallo - BaBar

Signal MC generation (I)

- Three kinds of signal MC are used for $B \rightarrow X_u lv$:
- resonant: contains exclusive $B \rightarrow X_u lv$ decays according to measured values and theoretical expectations (ISGW2 model, look @ PRD, 52, 1995 (2783))
- non resonant: the final state hadron is produced with a continuous invariant mass spectrum (above $2m_{\pi}$) and takes into account the Fermi motion of the quark b inside the B meson (Neubert and De Fazio, JHEP 9906:17 (1999))
- hybrid: mixes the previous ones in agreement with the measured fraction of resonant and non resonant events below a given Mx threshold.

Signal MC generation (II)

	mode	BR	hadron mass $[GeV]$	mode	BR	hadron mass [GeV]
Γ	$B^0 \to \pi^- \ell^+ \nu$	$180 \cdot 10^{-6}$	0.13498	$B^+ \rightarrow \pi^0 \ell^+ \nu$	$90 \cdot 10^{-6}$	0.13957
				$B^+ \rightarrow \eta \ell^+ \nu$	$30 \cdot 10^{-6}$	0.54730
	$B^0 \rightarrow \rho^- \ell^+ \nu$	$260\cdot 10^{-6}$	0.7685	$B^+ \rightarrow \rho^0 \ell^+ \nu$	$130\cdot10^{-6}$	0.7685
				$B^+ \rightarrow \omega \ell^+ \nu$	$130\cdot10^{-6}$	0.78257
				$B^+ \rightarrow \eta' \ell^+ \nu$	$60 \cdot 10^{-6}$	0.95777
	$B^0 \rightarrow a_0^- \ell^+ \nu$	$14\cdot 10^{-6}$	0.9835	$B^+ \rightarrow a_0^0 \ell^+ \nu$	$7 \cdot 10^{-6}$	0.9835
	$B^0 \rightarrow a_1^- \ell^+ \nu$	$165\cdot10^{-6}$	1.23	$B^+ \rightarrow a_1^0 \ell^+ \nu$	$82 \cdot 10^{-6}$	1.23
	$B^0 \rightarrow a_2^- \ell^+ \nu$	$14 \cdot 10^{-6}$	1.318	$B^+ \rightarrow a_2^0 \ell^+ \nu$	$7 \cdot 10^{-6}$	1.318
	$B^0 \to b_1^- \ell^+ \nu$	$102\cdot 10^{-6}$	1.231	$B^+ \rightarrow b_1^0 \ell^+ \nu$	$48 \cdot 10^{-6}$	1.231
				$B^+ \rightarrow f_0^0 \ell^+ \nu$	$4 \cdot 10^{-6}$	1.000
				$B^+ \rightarrow f_0^{\prime 0} \ell^+ \nu$	$4 \cdot 10^{-6}$	1.4
				$B^+ \rightarrow f_1^0 \ell^+ \nu$	$41 \cdot 10^{-6}$	1.2822
				$B^+ \to f_1^{\prime 0} \ell^+ \nu$	$41 \cdot 10^{-6}$	1.4268
				$B^+ \rightarrow f_2^0 \ell^+ \nu$	$4 \cdot 10^{-6}$	1.275
				$B^+ \rightarrow f_2^{\prime 0} \ell^+ \nu$	$4 \cdot 10^{-6}$	1.525
				$B^+ \rightarrow h_1^0 \ell^+ \nu$	$24 \cdot 10^{-6}$	1.17
				$B^+ \rightarrow h_1^{\prime 0} \ell^+ \nu$	$24 \cdot 10^{-6}$	1.40
	exclusive	$735 \cdot 10^{-6}$		exclusive	$730 \cdot 10^{-6}$	
	inclusive	$616\cdot 10^{-6}$		inclusive	$616\cdot10^{-6}$	
	total	$1351\cdot 10^{-6}$		total	$1346\cdot 10^{-6}$	
08	/01/2004		Francesco Gall	o - BaBar		30

Systematic uncertainties

Expected yields from MC

- Fitted hadronic mass and charged tracks multiplicity are used to separate resonances.
- ▶ Using MC estimation, ~170 B→ X_u lv events are expected in 82 fb⁻¹ of data after all cuts, for M_x<1.55GeV.

Event selection

Selection cuts are optimized in order to maximize statistical significance:

Selection Criteria	$B o \pi^0 I \nu$	$B \rightarrow \rho^0 I \nu$	$\mathbf{B} \rightarrow \omega \mathbf{I} \nu$	$B \rightarrow q l v$
B_{reco} candidate	purity cuts	purity cuts	purity cuts	purity cuts
Min. lept. momentum	$p^* > 1.0 \; GeV$	$p^* > 1.0 \; GeV$	$p^* > 1.0 \; GeV$	$p^* > 1.0 \; GeV$
Number of leptons	$N_{lepton} = 1$	$N_{lepton} = 1$	$N_{lepton} = 1$	$N_{lepton} > 0$
Lept. Charge - B Flav.	$Q_{b(recoil)}Q_{\ell} > 0$	$Q_{b(recoil)}Q_{\ell} > 0$	$Q_{b(recoil)}Q_{\ell} > 0$	$Q_{b(recoil)}Q_{\ell} > 0$
Total charge	$Q_{tot} = 0$	$Q_{tot} = 0$	$Q_{tot} = 0$	-
Missing mass sq.	$M_{miss}^2 < 0.4 \ GeV^2$	$M_{miss}^2 < 0.3 \; GeV^2$	$M_{miss}^2 < 0.6 \; GeV^2$	-
Kaon Veto	$N_{K^{\pm}} + N_{K_S} = 0$	$N_{K^{\pm}} + N_{K_S} = 0$	$N_{K^{\pm}} + N_{K_S} = 0$	-
N charged tracks	$N_{chg} = 0$	$N_{chg} = 2$	$N_{chg} = 2$	-
$m_{X fit} - m_{X chg}$	-	$\Delta M_{chg} < 0.1 GeV$	$\Delta M_{chg} > 0.1 GeV$	-
Lower m_X Cut	$m_X > -0.1 \text{GeV}$	$m_X > 0.65 \mathrm{GeV}$	$m_X > 0.6 \text{GeV}$	-
Upper m_X Cut	$m_X < 0.16 \mathrm{GeV}$	$m_X < 0.95 \mathrm{GeV}$	$m_X~< 0.9{ m GeV}$	-

• " ρ^{0} " is defined as $\pi^{+}\pi^{-}$ in the mass window 0.65<m_{$\pi+\pi^{-}$}<0.95 GeV

08/01/2004

Francesco Gallo - BaBar

Sistematic uncertainties

	Relative Uncertainty on $R_{x/sl}(\%)$		
	$B^{\pm} \to \pi^0 l \nu$	$B^{\pm} \rightarrow "\rho^0" l\nu$	$B^{\pm} \rightarrow \omega l \nu$
electron id	1.3	4.0	2.5
muon id	0.5	1.3	0.3
K^{\pm} id	0.0	0.3	3.0
tracking efficiency	0.8	4.8	4.4
photon resolution	7.5	5.2	4.1
$m_{ m ES}$ fit	8.5	11.0	3.7
cross-feed $B^0 \rightarrow B^+$	1.5	1.8	2.4
$\epsilon_t^{sl}/\epsilon_t^u$	8.0	8.0	8.0
lepton momentum cut	2.0	4.0	4.0
$B \rightarrow D l \nu X$ and $D BRs$	0.0	1.0	1.4
$b \rightarrow u l \nu$ resonant	0.5	3.2	5.8
$b \rightarrow u l \nu$ non-resonant	0.5	6.8	16.4
Total error	14.2	17.1	24.5

08/01/2004

Francesco Gallo - BaBar