What Can We Learn From Λ Polarization ?

Aram Kotzinian

Torino University & INFN

On leave from Yerevan Physics Institute, Armenia & JINR, Dubna, Russia

INFN workshop Jan 8 2004,Torino Aram Kotzinian

1

Outline

• Transverse polarization of Λ Data **#**Models Transversity • Longitudinal polarization of Λ **#**LEP data Models Semi-Inclusive DIS (SIDIS) Target and Current Fragmentation Production mechanism and models • Some conclusions

Transverse Polarization of Λ

Models for Transverse Polarization

- DeGrand & Miettinen model (1981)
 - Quark recombination
- Anderson, Gustafson & Ingelman (1979)
 - String fragmentation
- Anselmino, Boer, D'Alesio & Murgia (2001)
 - New polarizing Fragmentation Functions
- Szwed (1981)
 - Multiple scattering of s-quark on quark-gluon matter
- Barni, Preparata & Ratcliffe (1992)
 - Diffractive triple-Regge model

DeGrand & Miettinen model

• An empirical rule for spin direction of recombining quark:

- Slow partons Down, fast partons Up
- SU(6) wave functions for baryons

Semiclassical dynamic is based on Thomas precession

FIG. 2. Momentum vectors for the s quark in the scattering plane in the sea of the proton (labeled by subscripts s/p) and in the Λ (labeled by subscript s/Λ). The recombination force is along the beam direction and the Thomas frequency $\overline{\omega}_T$ is out of the scattering plane.

> INFN workshop Jan 8 2004,Torino

Aram Kotzinian

New term in effective interaction Hamiltonian:

 $U = \vec{\mathbf{S}} \cdot \vec{\boldsymbol{\omega}}_T$

where Thomas frequency is

$$\vec{\omega}_{T} = \frac{\gamma}{\gamma+1} \frac{\vec{\mathbf{F}}}{m_{s}} \times \vec{\mathbf{V}}$$

5

Anderson, Gustafson & Ingelman model

• Semiclassical string fragmentation model

• Vacuum quantum numbers of quark-antiquark pair: ${}^{3}P_{0}$ -state

• Normal to production plane – out of picture

- $s\bar{s}$ -pair orbital moment is compensated by spin
 - ***** Negative transverse polarization of Λ

Polarizing Fragmentation Functions

• In unpolarized quark fragmentation with nonzero transverse momentum, \mathbf{k}_{\perp} , Λ can be polarized

$$\mathbf{p}_q$$

$$\begin{split} \hat{D}_{h^{\uparrow}/q}(z,\mathbf{k}_{\perp}) &= \frac{1}{2} \hat{D}_{h/q}(z,\mathbf{k}_{\perp}) + \frac{1}{2} \Delta^{N} D_{h^{\uparrow}/q}(z,\mathbf{k}_{\perp}) \frac{\hat{P}_{h} \cdot (p_{q} \times \mathbf{k}_{\perp})}{|p_{q} \times \mathbf{k}_{\perp}|} \\ \Delta^{N} D_{h^{\uparrow}/a}(z,\mathbf{k}_{\perp}) &\equiv \hat{D}_{h^{\uparrow}/a}(z,\mathbf{k}_{\perp}) - \hat{D}_{h^{\downarrow}/a}(z,\mathbf{k}_{\perp}) = \hat{D}_{h^{\uparrow}/a}(z,\mathbf{k}_{\perp}) - \hat{D}_{h^{\uparrow}/a}(z,-\mathbf{k}_{\perp}), \end{split}$$

Probabilistic interpretation – no interference effects

INFN workshop Jan 8 2004,Torino

Szwed model

- main assumption is that the s-quark obtains the required transverse momentum by multiple scattering on quark-gluon matter (approximate by external gluonic field $\Phi^a(q) = 4\pi g I^a/q^2$
- Polarization appears already in the second order of the perturbation calculation and reads then

$$\mathbf{S}_{\mathrm{T}}^{\mathrm{q}} = \frac{2C\alpha_{\mathrm{s}}m|\mathbf{k}|}{E^2} \frac{\sin^3\theta/2\ln\sin\theta/2}{\left[1 - (\mathbf{k}^2/E^2)\sin^2\theta/2\right]\cos\theta/2} \mathbf{n}$$

Barni, Preparata & Ratcliffe

$$S_T^{\Lambda} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \frac{\Delta\sigma}{\sigma}, \quad \sigma = 2F_{++}^{B}, \quad \Delta\sigma = 2 \operatorname{Im} F_{-+}^{B}$$

Interference between diagrams with different intermediate baryons give rise to polarization

Fig. 2. The triple-Regge prediction of the Λ^0 cross section compared to the data of ref. [11], the curves from top to bottom refer to $\theta_{iab} = 0.5, 2, 4, 6, 8.1, 10$ mrad.

Fig. 5. Our results for the Λ^0 polarization as a function of p_T for $x_F = 0.40, 0.55, 0.70$ (upper, middle and lower curves respectively) compared with the data (\oplus , \Box , \times) of refs. [11,18].

INFN workshop Jan 8 2004,Torino Aram Kotzinian

Some Open Questions

- No transverse polarization observed at LEP
- Positive transverse polarization at HERMES
 - Qualitatively can be explained in DM model with VMD approach
 - Parton model: u-quark dominance? Compare with neutrino data.

SIDIS

Transversity

• Transverse polarization of quarks in the transversely polarized nucleon: $h_{1q}(x)$ measurement

Transverse polarization transfer from quark to Λ

$$S_{\Lambda} = S_{\text{Target}} \cdot \frac{2(1-y)}{1+(1-y)^2} \, \frac{\sum_q e_q^2 \, h_{1q}(x) \, \Delta_T D_{\Lambda/q}(z)}{\sum_q e_q^2 \, q(x) \, D_{\Lambda/q}(z)}$$

• s-quark dominance in polarization transfer as in SU(6)?

Longitudinal Polarization of Λ: CFR

- Spin transfer from lepton to produced Λ (unpolarized target)
- Spin transfer in the longitudinally polarized quark fragmentation
 - Spin transfer coefficient: $C_q(z) \equiv \Delta D_q^{\Lambda}(z) / D_q^{\Lambda}(z)$
 - *** NQM:** $C_s(z) = 1$; $C_u(z) = C_d(z) = 0$
 - Burkardt & Jaffe: SU(3)&polarized DIS data

 $C_s(z) = 0.6; \ C_u(z) = C_d(z) = -0.2$

Ma, Schmidt, Soffer & Yang: quark-diquark model with SU(6) breaking & pQCD; Boros, Londergan & Thomas: MIT bag model

 $C_s(z) \le 1$ $C_u(z) = C_d(z) < 0$ at small z $C_u(z) = C_d(z) > 0$ at high z

Bigi; Gustafson & Hakkinen: SU(6)+LUND fragmentation $q \rightarrow B \rightarrow \Lambda$

 $C_s(z) \leq 1$ $C_u(z) = C_d(z) > 0$ at small z $C_u(z) = C_d(z) < 0$ at high z

INFN workshop Jan 8 2004,Torino

Longitudinal polarization of $\Lambda/\overline{\Lambda}$ in e^+e^- annihilation at Z^0 pole (data from DELPHI (1995), curves: A. K., A. Bravar & D. von Harrach(1998))

• HERMES data

TFR: Meson Cloud Model

Melnitchouk & Thomas:

100 % anticorrelated with target polarization
contradiction with neutrino data for unpolarized target
Longitudinal polarization of Λ in the TFR

Intrinsic Strangeness Model

- Karliner, Kharzeev, Sapozhnikov, Alberg, Ellis & A.K.
 - * nucleon wave function contains an admixture with $s\overline{s}$ -component:

$$|p\rangle = a\sum_{X=0}^{\infty}|uudX\rangle + b\sum_{X=0}^{\infty}|uud\bar{s}sX\rangle + \dots$$

- # π, K masses are small at the typical hadronic mass scale \Rightarrow a strong attraction in the $J^P = 0^- -$ channel.
- $q \overline{q} pairs from vacuum in {}^{3}P_{0} state$

Spin crisis: $\Delta s \approx -0.1$ Polarized proton:

Ed. Berger criterion (separation of CFR &TFR)

The typical hadronic correlation length in rapidity is

 $\Delta y_h \simeq 2$

Illustrations from P. Mulders:

A production in 500 GeV/c π --Nucleon Production

• Fermilab E791 Collaboration, hep-ph/0009016

$$\begin{aligned} \pi^- &= u \bar{d} \quad \Lambda^0 = u ds \quad \text{common u} \\ \pi^- &= u \bar{d} \quad \bar{\Lambda}^0 = \bar{u} \bar{d} \bar{s} \quad \text{common } \bar{d} \end{aligned}$$

$$A = \frac{N_{\Lambda^0} - N_{\bar{\Lambda}^0}}{N_{\Lambda^0} + N_{\bar{\Lambda}^0}}$$

J.Ellis, A.K. & D.Naumov (2002)

 $P^{lN}_{\Lambda}(B) = \frac{\sum_{M} P_s\left(B(J,M)\right) \mid \langle B(J,M) \mid \text{diquark-quark remnant} + \text{s quark} \mid \rangle \mid^2}{\sum_{M} \mid \langle B(J,M) \mid \text{diquark-quark remnant} + \text{s quark} \mid \rangle \mid^2}$

— P_s (B(J, M)) is the polarization of the strange quark in the baryon B with the spin state | B(J, M)),
— | diquark-quark remnant + s quark) is the product of the wave function of the remnant diquark and the wave function of polarized s quark.

The remnant diquark-quark wave functions are:

$$|p \ominus d^{\uparrow}\rangle = \frac{1}{\sqrt{36}} [-\sqrt{2}(uu)_{1,0} + 2(uu)_{1,-1}]$$
$$|n \ominus d^{\uparrow}\rangle = \frac{1}{\sqrt{36}} [3(ud)_{0,0} + (ud)_{1,0} - \sqrt{2}(ud)_{1,-1}]$$

The wave function of polarized s quark is:

$$|s\rangle_{pol} = \frac{1}{\sqrt{2}} \mid \sqrt{(1+C_{sq})}s^{\uparrow} + \sqrt{(1-C_{sq})}s^{\downarrow}\rangle$$

Finally, the Λ^0 polarization in lN DIS is:

$$P_{\Lambda}^{lN} = \sum_{B} \xi_{B} P_{\Lambda}^{lN}(B)$$
, where ξ_{B} is the fraction of Λ^{0} produced via B

INFN workshop Jan 8 2004,Torino Aram Kotzinian

Λ polarization in quark & diquark fragmentation

 Λ polarization from the quark fragmentation

 $P^q_{\Lambda}(B) = -C^{\Lambda}_q(B)P_q,$

	Table 1: S	pin correlation	coefficients in	SU(6)	and BJ	models
--	------------	-----------------	-----------------	-------	--------	--------

Λ's parent	C_{i}	A. U	C_{i}	A I	C_{i}	A a
	SU(6)	BJ	SU(6)	BJ	SU(6)	BJ
quark	0	-0.18	0	-0.18	1	0.63
Σ^{0}	-2/9	-0.12	-2/9	-0.12	1/9	0.15
Ξ^{0}	-0.15	0.07	Ó	0.05	0.6	-0.37
Ξ-	0	0.05	-0.15	0.07	0.6	-0.37
Σ^{\star}	5/9	5/9	5/9	5/9	5/9	5/9

Λ polarization from the diquark fragmentation

$$\begin{split} P^{\nu \, d}_{\Lambda}(prompt; N) &= P^{\sigma \, u}_{\Lambda}(prompt; N) = \\ P^{l \, u}_{\Lambda}(prompt; N) &= C_{sq} \cdot P_{q}, \end{split}$$

$$\begin{split} P^{\nu \ d}_{\Lambda}(\Sigma^{\mathbf{0}};n) &= P^{\sigma \ u}_{\Lambda}(\Sigma^{\mathbf{0}};p) = \\ P^{l \ u}_{\Lambda}(\Sigma^{\mathbf{0}};p) &= P^{l \ d}_{\Lambda}(\Sigma^{\mathbf{0}};n) = \frac{1}{3} \cdot \frac{2 + C_{sq}}{3 + 2C_{sq}} \cdot P_{q}, \end{split}$$

$$\begin{split} P^{\nu \, d}_{\Lambda}(\Sigma^{\star 0};n) &= P^{\nu \, d}_{\Lambda}(\Sigma^{\star +};p) = \\ P^{\rho \, u}_{\Lambda}(\Sigma^{\star 0};p) &= P^{\rho \, u}_{\Lambda}(\Sigma^{\star +};n) = \\ P^{l \, u}_{\Lambda}(\Sigma^{\star 0};p) &= P^{l \, d}_{\Lambda}(\Sigma^{\star 0};n) = \\ P^{l \, d}_{\Lambda}(\Sigma^{\star +};p) &= P^{l \, u}_{\Lambda}(\Sigma^{\star -};n) = -\frac{5}{3} \cdot \frac{1 - C_{sq}}{3 - C_{sq}} \cdot P_{q}. \end{split}$$

Spin Transfer

- We use Lund string fragmentation model incorporated in LEPTO6.5.1 and JETSET7.4.
- We consider two extreme cases when polarization transfer is nonzero:
 - model A:
 - \blacksquare the hyperon contains the stuck quark: Rq = 1
 - \blacksquare the hyperon contains the remnant diquark: Rqq = 1
 - model B:
 - ***** the hyperon originates from the stuck quark: $Rq \ge 1$
 - ***** the hyperon originates from the remnant diquark: $Rqq \ge 1$

Fixing free parameters

- We vary two correlation coefficients ($C_{sq_{val}}$ and $C_{sq_{sea}}$) in order to fit our models A and B to the NOMAD Λ polarization data.
- We fit to the following 4 NOMAD points to find our free parameters:

•
$$\nu p: P_x^{\Lambda} = -0.26 \pm 0.05(stat),$$

- νn : $P_x^{\Lambda} = -0.09 \pm 0.04(stat)$,
- ${ ~~} { ~~} W^2 < 15 ~{\rm GeV^2}: ~ P^{\Lambda}_x = -0.34 \pm 0.06 (stat) {,}$
- $W^2 > 15 \text{ GeV}^2$: $P_x^{\Lambda} = -0.06 \pm 0.04(stat)$.

As a result of these fits we find: **model A:** $C_{sq_{val}} = -0.35 \pm 0.03$ and $C_{sq_{sea}} = -0.95 \pm 0.03$ **model B:** $C_{sq_{val}} = -0.25 \pm 0.03$ and $C_{sq_{sea}} = 0.15 \pm 0.03$

Results

Figure 5: Our model predictions (model A - solid line, model B - dashed line) for polarization of Λ hyperons produced in ν_{μ} charged current DIS interactions off nuclei as functions of W^2 , Q^2 , x_{Bj} , y_{Bj} , x_F and z (at $x_F > 0$). The points with error bars are from NOMAD.

Figure 6: Our model predictions (model A - solid line, model B - dashed line) for the spin transfer of Λ hyperons produced in e^+ DIS interactions off nuclei as functions of W^2 , Q^2 , x_{Bj} , y_{Bj} , x_F and z (at $x_F > 0$). ($E_e = 27.5 \text{ GeV}$) The points with error bars are from HERMES

INFN workshop Jan 8 2004,Torino Aram Kotzinian

Predictions for COMPASS

The spin-correlation coefficient for the sea quark is different in model A: and model B:

 $x_{min} = 0.003$ in the COMPASS, so we expect different polarizations of Λ^0 in these two cases:

Table 3: Λ polarization in μ^+ DIS predicted for the COMPASS experiment for $Q^2 > 1$. GeV², $x_F > -0.2$ and 0.5 < y < 0.9.

	Target nucleon				
P_{Λ} (%)	isoscalar	proton	neutron		
model A	-7.3	-7.3	-7.2		
model B	-0.4	-0.4	-0.4		

INFN workshop Jan 8 2004,Torino

Conclusions

- Λ polarization is a non-perturbative phenomena. We have many models for transverse polarization
 - The spite of almost 30 years of efforts to understand the dynamics of transverse polarization of Λ still lot of questions remain
 - What is real mechanism of spontaneous transverse polarization? Can we understand it starting from first principles of QCD?
 - Why it is small (or zero) at LEP
- Predictions for Λ polarization are very sensitive to production mechanism
- We need models which are able to describe the data both in TFR and CFR simultaneously. For the moment we have Lund model in LEPTO
- A phenomenological polarized intrinsic strangeness + SU(6) model is able to describe all available data on longitudinal polarization of Λ in full kinematic range
- Energies in the running experiments are too low to distinguish between different (SU(6) and BJ) models for spin transfer in quark fragmentation

