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1. Diffrazione in collisioni elettrone-protone a HERA
2. Diffrazione in termini di quark, gluoni e QCD

3. Uno sguardo al futuro: produzione diffrattiva di Higgs —

canale privilegiato per scoprire un Higgs leggero a LHC ?
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Diffraction in hadron scattering

Diffraction is a feature of hadron-hadron interactions (30% of s,,):
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o) Beam particles emerge intact or dissociated into low-mass states.
Energy » beam energy (within a few %)

o) Final-state particles separated by large polar angle
(or pseudorapidity, In tan(g/2)): Large Rapidity Gap (LRG)

o) Interaction mediated by t-channel exchange of object with vacuum
quantum numbers (no colour): the Pomeron (IP) 5



Pomeron ?!

Pomeron goes back to the ‘60s: Regge trajectory, ie a moving pole
in complex angular momentum plane.

Would like to understand diffraction in terms of quarks, gluons and QCD

A worthwhile task:

Diffraction is a significant part of s, ,

Elastic cross section drives s, via optical theorem: ds /dt|,_ 1 (S;,()?
‘Understanding diffraction in terms of QCD offers new insight into
the proton and QCD itself

In the last 5-10 years, we learned a lot about diffraction by scattering
pointlike probes (electrons) on Pomerons
® Diffractive Deep Inelastic Scattering

No longer a field for initiated...

NB in following will often refer to Pomeron as if it were real particle (it isn’t)3



Diffractive Deep Inelastic Scattering
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Diffractive Deep Inelastic Scattering
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Diffraction in ep collisions ?!

1) Go to proton rest-frame
2) Virtual photon fluctuates to qq (colour dipole)

g

q
MWW 1 Joreutz
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uE W2~2I/x

*Lifetime of dipoles very long because of large gboost (E;» 50TeV!)
® it is the dipole that interacts with the proton

*This is why can do diffraction in ep collisions !

-Transverse size proportional to 1/ O(Q2+M_2?)
(for longitudinally polarised photons)

>

Transverse size of incoming hadron beam can be reduced

at will. Can be so small that strong interaction with proton
becomes perturbative (colour transparency) !
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Part I:
hard scattering on a Pomeron

 The partonic structure of the Pomeron
as probed by a pointlike virtual photon

« Rather than Pomeron: diffractive PDFs



Standard Deep Inelastic Scattering

2<< M2
For Q®<< M, In a frame in which the proton is very fast

(Breit frame):

x = Bjorken’s variable=
= fraction of proton’s momentum
carried by struck quark

» Q2/W2
P W = photon-proton centre of mass energy
y =W?s
2 2 ‘I 2 u
d S : — 4pa4 I,l_ y+ y 5 ,Fz(nyz)
dxd0?  x0" i 21+ R(x,09]
F,=Sie? x fi(x,Q)]

- DIS probes the partonic
\ structure of the proton

R=s, /St proton PDF °




Standard Deep Inelastic Scattering
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Diffractive Deep Inelastic Scattering

2 ,
e / Xp = fraction of proton’s momentum

taken by Pomeron
g = X in Fermilab jargon

b = Bjorken’s variable for the Pomeron

x/‘ IP = fraction of Pomeron’s momentum
carried by struck quark
= XIXp
d’s 4pa y2 u D(4) 2
Il' y+ F, (b, 0%, xp 1)

dbdQ%dx ,dt bO* 7

21+ R7)p

Naively, if IP were particle: F2D(4) » fIP (X|Pat) F2IP (b,QZ)

A

Flux of Pomerons ]
Pomeron structure function

[Ingelman, Schiein]
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Diffractive Structure Function vs b
Pomeron:
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Diffractive Structure Function vs Q2
Pomeron:
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— H1 2002 ¢,0 LO QCD Fit

Different scales !

Diffractive PDFs
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Fit with Altarelli-Parisi evolution equations:
« Parametrise Flavour Sitket (quarks+antiquarks) and Gluons at Q%= 3 GeV?
* Evolve with NLO Altarelli-Parisi equations and fit

Gluon dominated: integrated
fraction of exchanged momentum
carried by gluons is (75 £ 15)%

Diffractive PDFs:

fo° (b, %, X5, T): probability to find,
with probe of resolution Q2, in a
proton, parton i with momentum
fraction b, under the condition that
proton remains intact, and emerges
with small energy loss, x,, and
momentum transfer t

Diffractive PDFs are a feature of
the proton 13




Diffractive PDFs

A new type of PDFs, with same dignity as standard PDFs.
Applies when vacuum quantum numbers are exchanged

Rather than IP exchange: probe diffractive PDFs of proton

Diffractive PDFs:

fo° (b, %, X5, T): probability to find,
with probe of resolution Q2, in a
proton, parton i with momentum
fraction b, under the condition that
proton remains intact, and emerges
with small energy loss, x,, and
momentum transfer t

Diffractive PDFs are a feature of
the proton 14




(Diffractive) hard scattering factorisation

Diffractive DIS, like inclusive DIS, is factorisable
[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]:

F: én e 'i?rr X O <= universal partonic cross section

\ diffractive parton distribution functions:

evolve according to Altarelli-Parisi

15



Test factorisation in ep events

g jet
Use diffractive PDFs from previous slides to predict J_et
Je

diffractive dijet production cross section:

H1 Diffractive Dijets (prel.)

H1 fit 2002, 1P=p2, 11340 GeV>
— - Pr by — 25 P P
4 - * H1Data py,,~5(4) GeV >
® [ =3 DDISENT NLO *(143,_,) &8
o L e DDISENT NLO 5 20
£ t  --- DDISENTLO o
2 10 ;
p 1.5
g s 4<Q?<80 GeV?
— | @] .
2 1L s 1 CDF cone algorithm

c jet 1(2

af X;»<0.05
10 | 1 | | | | 1 | 1 | 1 | | 1 D | 1 | 1 | | I IP
20 40 60 80 100 150 200 250 ;
Q? [GeV?)] W [GeV]4— Qp centre-of-mass energy

» Data well described !
« Same conclusion for charm production

mm) Hard scattering factorisation works in diffractive DIS
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Test factorisation in pp events

Measure diffraction at Fermilab: find a factor 10 less than expected
from HERA

.| ® CDF
— QCDfit to ZEUS 97 data (LPS)

p—h

Extrapolation
» from HERA

5
Diffractive PDFs from HERA do not work at Fermilab ?! o



Why is diffr factorisation violated in pp ?

* Proton and anti-proton are both large objects, unlike the pointlike
virtual photon.

* In addition to the hard diffractive scattering, there may be soft
interactions among spectator partons. They fill the rapidity gap

and slow down the outgoing p,p

F(B)

Predictions based
on rescattering

[ P "“jf_w J N assuming HERA

J CDF data’ e diffractive PDFs

g=l

quank  gloon

. I:I l} I:IB {I I:IE| I:I 1 0.2 a4 0B
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Summary |

« We have measured the partonic content of the exchange
responsible for elastic and diffractive interactions — mainly
gluons [ie we think we know what a Pomeron is]

« Rather than viewing diffraction as due to the exchange of IP
® exchange of partons belonging to the proton

* This has led to a new kind of PDFs relevant when the
vacuum quantum numbers are exchanged: diffractive PDFs

 Hard scattering factorisation of diffractive PDFs works in

DIS. We are on the way to understanding the /arge breaking
of factorisation observed in ep vs pp

19



Digression: diffraction as a window on

parton-parton correlations in the proton
gc X

< Vacuum quantum numbers

P P
 Vacuum quantum numbers are exchanged

» Since exchange consists of partons from the proton, need to exchange
more than one parton to get the vacuum quantum numbers

» Simplest possibility: two gluons

q W X Sensitivity to parton-parton

correlations in proton — quantified by
X352 &= X, - Generalised PDFs (GPDs)

S H [H(Xl,XZ,QZ)]2 20




Sensitivity to GPDs

» Sensitivity to GPDs largest for exclusive final states

g,

X= vector meson or
single photon (Deeply Virtual Compton Scattering, DVCS)
/\

P P
» Effect is large — factor 3 in U production
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GPD-based calculations, NLO (!) “




Part I

The future:

Diffractive Higgs production — the
way to discover a light Higgs ?!
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Diffractive Higgs at LHC

 For light Higgs (» 120 GeV), gg ® H, H® bb mode has highest branching
ratio, but signal swamped by gg ® bb

« Signal-to-background ratio improves dramatically for diffractive
production: S/B~3; for 30 fb-1, observe 11 events [Khoze, Martin, Ryskin,2000]

P () P, « Reconstruct M,, from bb (central
IP ' LRG detector)
) b e and/or from scattered protons
H <: b (proton spectrometer in tunnel)
IP  LRG with missing mass method
1-2 GeV resolution
p _/ p‘ *H®tt, WW also OK

Major, but not insurmountable, experimental difficulties:
event pile-up at high lumi (»23 interactions/bunch crossing) ‘spoils’

rapidity gaps; Roman Pot signals too late for L1 trigger 23



Diffractive Higgs at LHC

* More in detail:

- — P
‘ t-quark loop
Shields the colour . /
charge of the other D= H

two gluons '

 Wide range of theorefigal predictions — consensus ?

Bialas and Landshoff, Cudell anfifHernandez; Levin; Kharzeev, Levin; Khoze, Martin and Ryskin;
Cox, Forshaw and Heinemann, ggoonekamp et al, Enberg et al, Godizov et al, ...

 Diffractive PDFs, GPDs essential for prediction

* Understanding of factorisation breaking ep vs pp essential

24
* LOI expected from CMS/Totem in Spring 2005



Grand summary

 Diffrazione capita, quantitativamente, in termini di QCD (non piu’
indispensabile parlare di traiettorie e pomeroni), almeno in presenza di
una scala dura

 Diffrazione dovuta allo scambio di partoni del protone che trasportano
i numeri quantici del vuoto
® si sondano le PDF diffrattive del protone (per lo piu’ gluoni)

« Fattorizzazione di QCD funziona per gli eventi diffrattivi B
(ma con importanti correzioni di rescattering per andare da ep a pp, pp)

» Sensibile alle correlazioni nel protone (GPD)

« Canale privilegiato per la scoperta di un Higgs leggero ?
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