Diffrazione da HERA a LHC (una rassegna per non iniziati)

M. Arneodo Universita' del Piemonte Orientale, Novara, INFN Torino

> Congressino INFN-Torino 16 dicembre 2004

- 1. Diffrazione in collisioni elettrone-protone a HERA
- 2. Diffrazione in termini di quark, gluoni e QCD
- 3. Uno sguardo al futuro: produzione diffrattiva di Higgs canale privilegiato per scoprire un Higgs leggero a LHC ?

Diffraction in hadron scattering

Diffraction is a feature of hadron-hadron interactions (30% of σ_{tot}):

- o) Beam particles emerge intact or dissociated into low-mass states. **Energy »** beam energy (within a few %)
- o) Final-state particles separated by large polar angle (or pseudorapidity, In tan(q/2)): Large Rapidity Gap (LRG)
- o) Interaction mediated by t-channel exchange of object with vacuum quantum numbers (no colour): the Pomeron (IP) 2

Pomeron ?!

Pomeron goes back to the '60s: Regge trajectory, ie a moving pole in complex angular momentum plane.

Would like to understand diffraction in terms of quarks, gluons and QCD

A worthwhile task:

Diffraction is a significant part of s_{tot}
Elastic cross section drives s_{tot} via optical theorem: ds_{el}/dt|_{t=0}μ (s_{tot})²
Understanding diffraction in terms of QCD offers new insight into the proton and QCD itself

No longer a field for initiated...

NB in following will often refer to Pomeron as if it were real particle (it isn't)³

Diffractive Deep Inelastic Scattering

Diffractive Deep Inelastic Scattering

Diffraction in ep collisions ?!

1) Go to proton rest-frame

2) Virtual photon fluctuates to $q\overline{q}$ (colour dipole)

- Lifetime of dipoles very long because of large gboost (Eg * 50TeV!)
 ® it is the dipole that interacts with the proton
- •This is why can do diffraction in ep collisions !
- •Transverse size proportional to 1/ **Ö**(Q²+ M_{qq}⁻²) (for *longitudinally* polarised photons)

Transverse size of incoming hadron beam can be reduced at will. Can be so small that strong interaction with proton becomes perturbative (colour transparency) !

Part I: hard scattering on a Pomeron

- The partonic structure of the Pomeron as probed by a pointlike virtual photon
- Rather than Pomeron: diffractive PDFs

Standard Deep Inelastic Scattering

For $Q^2 << M_7^2$:

In a frame in which the proton is very fast (Breit frame):

- x = Bjorken's variable=
 - = fraction of proton's momentum carried by struck quark

» Q²/W²

W = photon-proton centre of mass energy

$$y = W^2/s$$

$$\frac{d^{2}s}{dxdQ^{2}} = \frac{4pa^{2}}{xQ^{4}} \left\{ 1 - y + \frac{y^{2}}{2[1 + R(x,Q^{2})]} \right\} \frac{F_{2}(x,Q^{2})}{F_{2}(x,Q^{2})}$$

$$F_{2} = S_{i}[e_{i}^{2} \times f_{i}(x,Q^{2})]$$

Standard Deep Inelastic Scattering

9

Diffractive Deep Inelastic Scattering

X_{IP} = fraction of proton's momentum taken by Pomeron

= X in Fermilab jargon

 Bjorken's variable for the Pomeron
 = fraction of Pomeron's momentum carried by struck quark

 $= x/x_{IP}$

Diffractive Structure Function vs b

Pomeron:

Diffractive Structure Function vs Q²

Pomeron:

Proton:

Diffractive PDFs

Fit with Altarelli-Parisi evolution equations:

- Parametrise Flavour Siget (quarks+antiquarks) and Gluons at Q²= 3 GeV²
- Evolve with NLO Altarelli-Parisi equations and fit

Gluon dominated: integrated fraction of exchanged momentum carried by gluons is (75 ± 15)%

Diffractive PDFs:

 $f_{i/p}{}^{D}(\mathbf{h}, \mathbf{Q}^{2}, \mathbf{x}_{IP}, t)$: probability to find, with probe of resolution \mathbf{Q}^{2} , in a proton, parton *i* with momentum fraction **h** under the condition that proton remains intact, and emerges with small energy loss, \mathbf{x}_{IP} , and momentum transfer *t*

Diffractive PDFs are a feature of the proton

Diffractive PDFs

A new type of PDFs, with same dignity as standard PDFs. Applies when vacuum quantum numbers are exchanged

Rather than IP exchange: probe diffractive PDFs of proton

Diffractive PDFs:

 $f_{i/p}^{D}(\mathbf{h}, Q^{2}, x_{IP}, t)$: probability to find, with probe of resolution Q², in a proton, parton *i* with momentum fraction **h** under the condition that proton remains intact, and emerges with small energy loss, x_{IP} , and momentum transfer *t*

Diffractive PDFs are a feature of the proton 14

(Diffractive) hard scattering factorisation

Diffractive DIS, like inclusive DIS, is factorisable

[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]:

Test factorisation in ep events

Use diffractive PDFs from previous slides to predict diffractive dijet production cross section:

- Data well described !
- Same conclusion for charm production

Hard scattering factorisation works in diffractive DIS

g ///

Test factorisation in pp events

Measure diffraction at Fermilab: find a factor 10 less than expected from HERA

Diffractive PDFs from HERA do not work at Fermilab ?!

Why is diffr factorisation violated in pp?

- Proton and anti-proton are both large objects, unlike the pointlike virtual photon.
- In addition to the hard diffractive scattering, there may be soft interactions among spectator partons. They fill the rapidity gap and slow down the outgoing p,p

b

Kaidalov, Khoze, Martin, Ryskin (2000)

Summary I

- We have measured the partonic content of the exchange responsible for elastic and diffractive interactions – mainly gluons [ie we think we know what a Pomeron is]
- This has led to a new kind of PDFs relevant when the vacuum quantum numbers are exchanged: diffractive PDFs
- Hard scattering factorisation of diffractive PDFs works in DIS. We are on the way to understanding the *large* breaking of factorisation observed in ep vs pp

Digression: diffraction as a window on parton-parton correlations in the proton

- Vacuum quantum numbers are exchanged
- Since exchange consists of partons from the proton, need to exchange more than one parton to get the vacuum quantum numbers
- Simplest possibility: two gluons

Sensitivity to parton-parton correlations in proton – quantified by Generalised PDFs (GPDs) $\boldsymbol{s} \propto [H(x_1, x_2, Q^2)]^2$ 20

Sensitivity to GPDs

Sensitivity to GPDs largest for exclusive final states

• Effect is large – factor 3 in **U** production

Part II

The future:

Diffractive Higgs production – the way to discover a light Higgs ?!

Diffractive Higgs at LHC

- For light Higgs (» 120 GeV), gg ®H, H ® bb mode has highest branching ratio, but signal swamped by gg ®bb
- Signal-to-background ratio improves dramatically for diffractive production: S/B~3; for 30 fb⁻¹, observe 11 events [Khoze, Martin, Ryskin, 2000]

- Reconstruct M_H from bb (central detector)
- and/or from scattered protons (proton spectrometer in tunnel) with missing mass method 1-2 GeV resolution
- H ®tt, WW also OK

Major, but not insurmountable, experimental difficulties: event pile-up at high lumi (»23 interactions/bunch crossing) 'spoils' rapidity gaps; Roman Pot signals too late for L1 trigger

Diffractive Higgs at LHC

• More in detail:

• Wide range of theoretical predictions – consensus ?

Bialas and Landshoff, Cudell and Hernandez; Levin; Kharzeev, Levin; <u>Khoze, Martin and Ryskin;</u> Cox, Forshaw and Heinemann, Soonekamp et al, Enberg et al, Godizov et al, ...

- Diffractive PDFs, GPDs essential for prediction
- Understanding of factorisation breaking ep vs pp essential
- LOI expected from CMS/Totem in Spring 2005

Grand summary

- Diffrazione capita, quantitativamente, in termini di QCD (non piu' indispensabile parlare di traiettorie e pomeroni), almeno in presenza di una scala dura
- Diffrazione dovuta allo scambio di partoni *del protone* che trasportano i numeri quantici del vuoto
 ® si sondano le PDF diffrattive del protone (per lo piu' gluoni)
- Fattorizzazione di QCD funziona per gli eventi diffrattivi (ma con importanti correzioni di rescattering per andare da ep a pp, pp)
- Sensibile alle correlazioni nel protone (GPD)
- Canale privilegiato per la scoperta di un Higgs leggero ?