Primi risultati dell'esperimento FINUDA

Alessandra Filippi INFN Torino

II Congressino di Sezione 16.12.04, Torino

Piano della presentazione

- Breve introduzione
 - Motivi di interesse della fisica degli Ipernuclei
 - Metodi di produzione degli ipernuclei e proprietà principali
- L'esperimento FINUDA a DA Φ NE
 - Breve descrizione dell'apparato e prestazioni
 - Primi risultati
 - Spettroscopia su diversi bersagli
 - Studio di decadimenti non mesonici e canali rari
 - Studio della produzione di ipernuclei ricchi di neutroni
 - By-products: studio di stati deeply bound K-nucleoni
- Conclusioni e prospettive future a breve termine

Fisica degli Ipernuclei: studio di una nuova forma di materia

- Studio della struttura nucleare e della dinamica nucleare a molti corpi, esteso a nuove simmetrie non convenzionali, per l'inclusione di un nuovo grado di libertà nel nucleo S≠0
 - Fisica Nucleare
- Studio dell'interazione forte YN e YY nell'ambito della simmetria di flavor SU(3), con l'esplorazione di effetti di violazione di simmetria
 - Interazione forte
- Studio dell'interazione debole barione-barione, a quattro fermioni, con cambiamento di stranezza YN \rightarrow NN, che si può verificare solo all'interno degli ipernuclei, e del problema della validità della regola empirica $\Delta I=1/2$ in interazioni deboli
 - Interazione debole
- Studio del ruolo giocato dai gradi di libertà dei quark e da modelli chirali in fenomeni nucleari e ipernucleari
 - Effetti microscopici nei nuclei
- Studio della possibile esistenza di particelle di-barioniche (H particle)
 - QCD

Produzione di Ipernuclei A in reazioni indotte da adroni: K⁻ a riposo ed in volo, π^+

DAΦNE

Il primo run di FINUDA: 2003-2004

L'esperimento FINUDA

FINUDA @ DAΦNE

Energia della macchina e calibrazione dello spettrometro: eventi Bhabha

9

I principali punti del programma di fisica di FINUDA

$$K^- + {}^AZ \rightarrow {}^A_\Lambda Z + \pi^-$$

- SPETTROSCOPIA IPERNUCLEARE
 - Test di diversi modelli teorici per il potenziale di interazione Λ -N
 - Test delle predizione del modelli nucleari a particella singola
 - Studio di stati legati con stranezza
 - Misure simultanee
- DECADIMENTI DEGLI IPERNUCLEI
 - Studio dei processi deboli barione-barione in materia nucleare
 - Studio di decadimenti rari
 - $\Lambda \rightarrow \pi N$, $\Lambda N \rightarrow NN$, $\Lambda NN \rightarrow nNN$
 - Misure contemporanee su nuclei differenti
- STUDIO DEGLI IPERNUCLEI RICCHI DI NEUTRONI
 - Specie ipernucleari mai osservate prima

Ricostruzione del vertice K⁺K⁻

Alcuni eventi ipernucleari visti da FINUDA

Alcuni eventi ipernucleari visti da FINUDA

Risoluzione in impulso: stato attuale

- La risoluzione viene valutata dallo spettro del decadimento $K_{\mu 2}$ (tracce positive in uscita dal vertice K⁺)
- Selezionando tutte le tracce da tutti i bersagli: $\Delta p/p = 0.9\%$
- Selezionando tracce con percorsi ben definiti (ottanti di apparato): $\Delta p/p = 0.4\%$
- Fine tuning degli allineamenti ancora in corso

I bersagli di ¹²C: spettroscopia del ¹²_AC

- L'ipernucleo ¹² C è quello studiato più estensivamente finora
- Tre bersagli di ¹²C per fornire:
 - Dati di calibrazione da paragonare a misure precedenti
 - Miglioramento della precisione delle misure si tutte le osservabilil misurate finora

Spettri inclusivi: $K^{-12}C \rightarrow \pi^{-}X$

 π^{-} momentum distribution

Entries 1322566

Diversi spettri ottenuti selezionando tracce con diverse topologie

Spettroscopia del 12_AC: simulazione dei fondi

Spettroscopia dell'ipernucleo ¹²_AC: lo spettro di energia di legame

Miglior risultato esistente finora su ${}^{12}_{\Lambda}$ C: KEK E369 Risoluzione in energia \approx 1.45 MeV FWHM Reazione di produzione (π^+ ,K⁺) Risultato preliminare di FINUDA: Risoluzione in energia \approx 1.3 MeV FWHM Reazione di produzione (K⁻_{stop}, π ⁻)

I bersagli di ⁶Li e ⁷Li

- I livelli più bassi del $_{\Lambda}^{7}$ Li sono quelli studiati più estesamente con la spettroscopia γ ad alta risoluzione
- Il doppietto fondamentale dovrebbe poter essere facilmente separato dagli stati eccitati a 2 e 3.7 MeV con la risoluzione di FINUDA
- Realizzabili le prime misure di decadimenti non mesonici per il ⁷ Li
- Ricerca dell'ipernucleo ricco di neutroni ⁷ H
- ⁶_ALi è instabile per emissione di nucleoni, ma il bersaglio di ⁶Li permette di formare sistemi ipernucleri leggeri: ⁵_AHe, ⁴_AHe, ⁴_AH
- Produzione di ipernuclei ricchi di neutroni, per mezzo della reazione: $K^- + {}^6Li \rightarrow {}^6_\Lambda H + \pi^-$
- Formazione di stati legati kaone-nucleoni profondamente legati: in bersagli leggeri
 - $K_{stop}^{-} + {}^{6}Li \rightarrow (ppnnK^{-}) + p$
 - $K_{stop}^{-} + {}^{7}Li \rightarrow (ppnnnK) + p$

Spettri da bersagli di ⁷Li e ⁶Li

Il ⁶_ALi non e' un ipernucleo legato, ma decade per interazione forte in iperframmenti, ^{4,5}_AHe e ⁴_AH: ${}^{6}Li + \pi^{-}$ strong ${}^{5}_{\Lambda}He + p$ ${}^{4}_{\Lambda}He + p + n$ ${}^{4}_{\Lambda}He + p + p$

Bersagli pesanti: 51V e 27Al

 Esiste solo una misura molto vecchia su ²⁷Al con una risoluzione molto rozza, 6 MeV FWHM

- ⁵¹V: sono stati misurati in reazioni (π^+, K^+) picchi corrispondenti a orbite di particella singola con risoluzione di **1.9 MeV** FWHM
- Ma: il capture rate e la formazione dello stato fondamentale in reazioni con K⁻_{stop} deve ancora essere studiato
 - Differente meccanismo di produzione

Spettri da bersagli di ²⁷Al e ⁵¹V

Decadimenti deboli degli ipernuclei

- Decadimento debole della Λ libera:
 - Λ → pπ⁻ B.R. 63.9%
 - $\Lambda \rightarrow n\pi^0$ B.R. 35.8%
- Vale la regola fenomenologica $\Delta I = \frac{1}{2}$ per decadimenti che coinvolgono quark strani
- Il decadimento mesonico è soppresso in materia nucleare per effetto del blocco di Pauli del nucleone nello stato finale
 - Decadimenti non mesonici degli ipernuclei: interazioni a 4 corpi
 - $\Lambda p \rightarrow pn$ branching ratio: Γ_p
 - $\Lambda n \rightarrow nn$ branching ratio: Γ_n

$$\frac{\eta}{\tau_{\Lambda}} = \Gamma_{\rm tot} = \Gamma_{\pi^-} + \Gamma_{\pi^0} + \Gamma_{\rm np} + \Gamma_{\rm nn} + \Gamma_{\rm 3N}$$

- Modo di decadimento dominante
- La vita media della Λ è praticamente costante per A>10
- L'andamento del rapporto Γ_p/Γ_n mostra un comportamento inatteso...

Spettri di energia di protoni e neutroni da decadimento non mesonico

Spettri inclusivi K⁻ Nucleo \rightarrow p X

100

100

200

300

400

500

Reazioni con p nello stato finale: $\Lambda p \rightarrow np$ $\pi^{-}p \rightarrow \Delta^{0} \rightarrow \pi^{-}p$ $\pi^+ p \rightarrow \Delta^{++} \rightarrow \pi^+ p$ $K^{-}(NN) \rightarrow Xp$ $\Sigma, \Lambda \rightarrow p$ decays Decadimenti non mesonici degli ipernuclei: ${}^{4}_{\Lambda}\text{He} \rightarrow p t$ $p_{p} = 510 \text{ MeV/c}$ decadimento raro (?) or deeply bound state?

700

600 p momentum(MeV/c)

Ricerca di decadimenti rari: ${}^{4}_{\Lambda}$ **He** \rightarrow **d**+**d**

Decadimento raro ${}^{4}_{\Lambda}$ He \rightarrow dd in FINUDA: selezione degli eventi

Ipernuclei A ricchi di neutroni

- Esistono nuclei leggeri con una distribuzione spaziale estesa che danno origine ad un alone di neutroni: alto rapporto N/Z
 - Interessanti per le applicazioni astrofisiche: materia nucleare ad alta densità nelle stelle di neutroni

- Buoni sistemi in cui studiare questo tipo di materia nucleare: ipernuclei ricchi di neutroni ⁷^AH, ⁶^AH, ¹²^BBe,...
 - Il ruolo di collante della Λ consente distribuzioni di massa più estese
 - Maggior energia di legame
 - Maggior numero di neutroni che può essere legato
 - Predizioni teoriche per l'esistenza di ipernuclei con un grande eccesso adronico (L. Majiling, NPA585(1995), 211c):
 - N/Z_{hyp} ~ 2 N/Z_{ordinary nuclei}
 - Non ancora osservati ⇒ Osservazioni possibili con FINUDA

Produzione di ipernuclei A ricchi di neutroni

- Doppio scambio di stranezza:
 - $\quad \pi^{-}p \to \pi^{0}n \; ; \; \pi^{0}p \to \mathbf{K}^{+} \Lambda \quad \text{KEK-E521}$
 - $K^-p \rightarrow \Lambda \pi^0$; $\pi^0 p \rightarrow n \pi^+$ FINUDA
- Scambio di stranezza con accoppiamento Λ - Σ : $K^-p \rightarrow \Sigma^- \pi^+$, $\pi^-p \rightarrow \Sigma^- K^+$ ($\Sigma^-p \leftrightarrow \Lambda n$)

- Reazioni che si possono studiare in FINUDA
 - **12C**: K⁻ + ¹²C \rightarrow ¹²_ABe + π^+ (N/Z= 2)
 - ⁶Li: K⁻ + ⁶Li \rightarrow ⁶_AH + π ⁺ (N/Z= 5)
 - ⁷Li: K⁻ + ⁷Li \rightarrow ⁷_AH + π ⁺ (N/Z= 6)
 - Metodo: Analisi dello spettro π^+ , contenente l'informazione dell'energia di legame della Λ dentro l'ipernucleo
 - Misura più difficile che per gli ipernuclei ordinari: statistica più bassa ($\sim 10^{-2} \div 10^{-3}$) ed accettanza inferiore per i π^+

Dati esistenti su ipernuclei ricchi di neutroni e nuove misure: ¹² Be, ⁶ H, ⁷ H

• Conoscenza abbastanza scarsa sugli ipernuclei ricchi di neutroni: in letteratura sono solo riportati limiti superiori per i rate di produzione

- Primi risultati preliminari ottenuti con FINUDA
 - Primi risultati in assoluto sull'iper-idrogeno ${}^{6}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ H

Prime evidenze per l'esistenza di deeply bound **K**-pp states

Akaishi, Yamazaki: esistenza di stati legati K con densità centrale 10 volte la normale densità nucleare: ${}^{3}_{\kappa}$ H (ppnK⁻), ${}^{4}_{\kappa}$ H (ppnnK⁻) e prevista anche la presenza di stati leggeri come ²_KH (K⁻pp)

Identificabili mediante: -missing mass spectroscopy ⁶Li + K⁻ \rightarrow (K⁻ppnnn) + p (monocromatico) -Invariant mass spectroscopy K-pp $\rightarrow \Lambda p$ Topologia dell'evento ben definita

 $p_{\Lambda} = 500 \text{ MeV/c}$ $p_{\rm p} = 500 \text{ MeV/c}$ $p_{\pi} = 200 \text{ MeV/c} \text{ (short tracks)}$

 Λ e p sono correlate back-to-back in particolar modo per tracce emesse da bersagli leggeri

31

Osservazione di un deeply bound K⁻pp state: risultati preliminari

Meccanismi per la produzione di un segnale di questo tipo:

-assorbimento su due nucleoni

 $\begin{array}{ll} \mathsf{K}^{-} + (\mathsf{pp}) \to \mathsf{Y}^{*} \ \mathsf{N} \to \Lambda \mathsf{p} & \text{atteso un picco a } \mathsf{m}(\mathsf{K}^{-}2\mathsf{p}) = 2.37 \ \mathsf{GeV}... \ \mathsf{NON} \ \mathsf{C}'\mathsf{E}'! \\ \to \Sigma^{0}\mathsf{p} \to \Lambda \gamma \ \mathsf{p} & \text{distribuzione più in basso di 74 MeV, e allargato} \end{array}$

-Formazione di un kaon bound state

 $\begin{array}{l} \mathsf{K}^{\text{-}} + (\mathsf{p}\mathsf{p}) \to \mathsf{X} \to \Lambda \mathsf{p} \\ \to \Sigma^0 \mathsf{p} \to \Lambda \gamma \mathsf{p} \end{array}$

L'unico contributo dovuto al fondo è nella regione a bassa massa ed è dato dal canale $\Sigma^0 p$

Ricerca di stati legati e ipernuclei Σ

- Ci si aspetta che gli ipernuclei Σ *non* esistano
 - − La conversione $\Sigma N \rightarrow \Lambda n$ rilascia 80 MeV e la Λ ha una notevole probabilità di uscire dal nucleo
 - Per giustificare l'esistenza degli ipernuclei bisognerebbe ipotizzare una soppressione del processo di conversione $\Sigma N \rightarrow \Lambda n$
- Alcune osservazioni sperimentali di stati ⁹_{Σ}Be, ¹²_{Σ}C, ¹²_{Σ}Be, ¹²_{Σ}C, non confermate in esperimenti ad alta statistica
- Unica osservazione confermata: ${}^{4}_{\Sigma}$ He ($\Sigma \equiv \Sigma^{0}, \Sigma^{+}$)
 - Si può considerare un'eccezione, per la sua particolare struttura

Potenzialità di FINUDA per l'osservazione di ipernuclei Σ

Conclusioni

- Primo run (30 milioni di eventi raccolti) concluso a metà marzo 2004
- Primi risultati, ancorché parziali e preliminari, già pienamente soddisfacenti, su:
 - Spettroscopia: risultati già competitivi con quelli migliori ottenuti finora a livello mondiale
 - Articolo su ${}^{12}{}_{\Lambda}\text{C}$ in preparazione
 - Capture rates di ipernuclei ricchi di neutroni mai osservati finora
 - Indicazioni su canali rari di decadimento degli ipernuclei
 - Osservazione di uno stato legato K-pp deeply bound
 - Articolo pronto, in via di sottomissione
- Ulteriori analisi in corso:
 - studio dei decadimenti non mesonici (richiesto tuning apparato per rivelazione neutroni, etc)
- Prospettive future:
 - Nuovo run previsto a partire dalla seconda metà del 2005, 400-500 pb⁻¹
 - (molto probabilmente) con bersagli di ⁶Li e ⁷Li per completare lo studio degli iperframmenti di He e Li, canali di decadimento rari, spettroscopia ⁷_ALi, studio deeply bound states, studio ipernuclei ricchi di neutroni

Un nuovo spettrometro per lo studio degli ipernuclei: FINUDA a DAΦNE

Principali performance dell'apparato

- Solenoide superconduttore: B=1.0 T, omogeneità entro il 2%
- Regione di interazione/bersagli: identificazione K⁺/K⁻, produzione e rivelazione ipernucleo formato
 - ISIM/OSIM: $\sigma_z = 30 \ \mu m$; $\Delta E = 20\%$ FWHM
 - TOFINO: $\sigma_t = 250 \text{ ps}$
- Zona di tracciamento: misura delle traiettorie ed impulsi delle particelle cariche (Δp/p 3.5‰)
 - LMDC: $\sigma(\rho, \phi) = 150 \ \mu\text{m}; \sigma_z \le 1\%$ wire length
 - STB: $\sigma(\rho, \phi) = 150 \ \mu\text{m}; \ \sigma_z = 500 \ \mu\text{m}$
- He chamber: minimizzazione del multiplo scattering
 - $\Delta p/p$: He atmosphere= 3.5‰ vs air = 2%
- Barile esterno di scintillatori: per trigger e rivelazione di neutroni ($\epsilon \le 13\%$)

- TOFONE: $\sigma_t = 250 \text{ ps FWHM}$; $\Delta E = 8\%$

La regione interna di FINUDA: zona di interazione e bersagli

Spettroscopia degli ipernuclei

- Scopo: comprendere le interazioni Barione-Barione
 - L'interazione NN è nota da dati di diffusione elastica, ben riprodotti da modelli fenomenologici di scambio di mesoni e a cluster di quark
 - L'interazione YN, YY è conosciuta solo scarsamente, i dati di diffusione disponibili sono pochi, i rate di produzione bassi e le vite medie molto brevi
- Negli ipernuclei Λ :
 - Assenza del blocco di Pauli
 - Estrazione immediata dell'interazione ΛΝ
 - La posizione dei picchi è ben riprodotta da semplici potenziali di Woods-Saxon potential

Reazioni possibili su ⁶Li

π -momentum spectrum

- $K^- + {}^6Li \rightarrow \pi^- + X$
 - **X:** ${}^{5}_{\Lambda}$ He + p
 - τ
 - Γ_p (in coincidence) about 10/pb⁻¹
 - Γ_n (in coincidence) about a few/pb⁻¹
 - Γ_{π-} about 10²/pb⁻¹
 - **X:** ${}^{4}_{\Lambda}$ He + p + n
 - ${}^{4}_{\Lambda}\text{He} \rightarrow d+d$ spectroscopized (0.3 pb⁻¹ if B.R.~10⁻³)
 - ${}^{4}_{\Lambda}\text{He} \rightarrow p + {}^{3}\text{H}$ spectroscopized (0.2 pb⁻¹ if B.R.~10⁻³)
 - ${}^{4}_{\Lambda}\text{He} \rightarrow \pi^{+}+n+{}^{3}\text{H}$ (many events, 10²/pb⁻¹)
 - $X: {}^{4}_{\Lambda}H + p + p$
 - ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$ spectroscopized (10²/pb⁻¹), calibration

