

DECAY MODES OF A-HYPERNUCLEI

THE Γ_n/Γ_p PUZZLE

For many years, a sound theoretical explanation of the large experimental values of Γ_n/Γ_p has been missing.

[W. M. Alberico and G. Garbarino, Phys. Rept. 369, 1 (2002)]

Theory strongly underestimated Γ_n/Γ_p data. For ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C:

$$\left[\frac{\Gamma_n}{\Gamma_p}\right]^{\rm Th} \simeq 0.1 \div 0.5 \ll \left[\frac{\Gamma_n}{\Gamma_p}\right]^{\rm Exp} \simeq 1 \div 2$$

Until recently, large uncertainties in the extraction of the ratio from data: only single proton spectra measured, very indirect determinations.

The One–Pion–Exchange (OPE) model predicts very small ratios for ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C:

$$\left[\frac{\Gamma_n}{\Gamma_p}\right]^{\text{OPE}} = 0.1 \div 0.2$$

but can reproduce the observed total non–mesonic rates.

Other interaction mechanisms beyond the OPE might then be responsible for the overestimation of Γ_p and the underestimation of Γ_n

- heavier mesons $(\rho, K, K^*, \omega, \eta, 2\pi/\rho, 2\pi/\sigma)$
- \blacklozenge direct quark mechanism
- \bullet two-nucleon induced mechanism
- \blacklozenge nucleon final state interactions

A few calculations with $\Lambda N \to nN$ transition potentials including heavy meson exchange [1] and/or direct quark contributions [2] have recently improved the situation $(\Gamma_n/\Gamma_p \simeq 0.4 \div 0.5)$, without providing an explanation of the origin of the puzzle

[1] D. Jido, E. Oset and J. E. Palomar, NPA 694 (2001) 525;
A. Parreño and A. Ramos, PRC 65 (2002) 015204;
K. Itonaga, T. Ueda and T. Motoba, PRC 65 (2002) 034617.

[2] K. Sasaki, T. Inoue and M. Oka, NPA 669 (2000) 331; A 678 (2000) 455E.

In addition, a realistic analysis of the Γ_n/Γ_p ratio requires [3]:

the inclusion of the TWO-NUCLEON INDUCED DECAY MECHANISM, whose experimental identification is expected in NNN coincidence measurements (FINUDA, KEK, BNL)

• the evaluation of the **NUCLEON ENERGY LOSSES INSIDE THE RESIDUAL NUCLEUS AND IN THE EXPERIMENTAL SET-UP**

[3] G. G., A. Parreño, A. Ramos, PRL 91 (2003) 112501; PRC 69 (2004) 054603

THE ASYMMETRY PUZZLE

Non–Mesonic Weak Decay of Polarized Λ –hypernuclei

Weak decay proton intensity from $\vec{\Lambda}p \rightarrow np$

 $I(\Theta) = I_0 \left[1 + \mathcal{A}(\Theta) \right]$

 $\mathcal{A}(\Theta) = P_y A_y \cos \Theta$

 P_y = hypernuclear polarization A_y = hypernuclear asymmetry parameter

In the shell model weak–coupling scheme

$$\mathcal{A}(\Theta) = p_{\Lambda} a_{\Lambda} \cos \Theta$$

where

$$p_{\Lambda} = \begin{cases} -\frac{J}{J+1}P_{y} & \text{if } J = J_{C} - \frac{1}{2} \\ P_{y} & \text{if } J = J_{C} + \frac{1}{2} \end{cases} = \Lambda \text{ polarization}$$

$$a_{\Lambda} = \begin{cases} -\frac{J+1}{J}A_{y} & \text{if } J = J_{C} - \frac{1}{2} \\ A_{y} & \text{if } J = J_{C} + \frac{1}{2} \end{cases} = \text{ intrinsic } \Lambda \text{ asymmetry parameter}$$

Nucleon FSI modify the weak decay proton intensity $I(\Theta)$. Experiments measure $I^{\mathrm{M}}(\Theta) = I_{0}^{\mathrm{M}} \left[1 + p_{\Lambda} a_{\Lambda}^{\mathrm{M}} \cos \Theta \right]$ then $a^{\rm M}_{\Lambda}$ is determined as: $a_{\Lambda}^{\rm M} = \frac{1}{p_{\Lambda}} \frac{I^{\rm M}(0^\circ) - I^{\rm M}(180^\circ)}{I^{\rm M}(0^\circ) + I^{\rm M}(180^\circ)}$ by using an indirect measurement $(^{5}_{\Lambda}\text{He})$ or a theoretical evaluation $(^{12}_{\Lambda}\text{C})$ of p_{Λ} . $^{12}_{\Lambda}{
m C}$ $^{5}_{\Lambda}$ He Sasaki et al. a_{Λ} $\pi + K + DQ$ -0.68Parreño et al. $\pi + \rho + K + K^* + \omega + \eta$ -0.68-0.73Itonaga et al. $\pi + K + 2\pi/\rho + 2\pi/\sigma + \omega$ -0.33Barbero et al. $\pi + \rho + K + K^* + \omega + \eta$ -0.54 $a_{\Lambda}^{
m M}$ **KEK-E160** -0.9 ± 0.3 **KEK-E278** 0.24 ± 0.22 -0.44 ± 0.32 KEK–E508 (prel.) KEK-E462 (prel.) 0.07 ± 0.08

OUR APPROACH

Number of primary NN pairs:

$$\begin{array}{l} N_{nn}^{\rm wd} \quad \propto \quad \Gamma_n \\ N_{np}^{\rm wd} \quad \propto \quad \Gamma_p \end{array}$$

Denoting with N_{nn} and N_{np} the number of nucleons emitted by the nucleus:

$$\frac{\Gamma_n}{\Gamma_p} \equiv \frac{N_{nn}^{\text{wd}}}{N_{np}^{\text{wd}}} \neq \frac{N_{nn}}{N_{np}} = R_2 \left(\Delta \theta_{12}, T_N^{\text{th}} \right)$$

Table 1:	N_{nn}/N_{np}	for ${}^5_{\Lambda}\text{He}$ and ${}^{12}_{\Lambda}$	C (cos θ_N	$_{NN} \leq -0.8$ and	d $T_N^{\rm th} = 30$	MeV)
		$^5_{\Lambda}{ m He}$		$^{12}_{\Lambda}{ m C}$		
		N_{nn}/N_{np}	Γ_n/Γ_p	N_{nn}/N_{np}	Γ_n/Γ_p	
	OPE	0.25	0.09	0.24	0.08	
	OMEa	0.51	0.34	0.39	0.29	
	OMEf	0.61	0.46	0.43	0.34	
	KEK–E462	0.45 ± 0.11				
	KEK–E508			0.40 ± 0.09		
		-		-		

Data from H. Outa, HYP2003, Nucl. Phys. A (to be published)

ASYMMETRY

The calculated proton intensities turn out to be well fitted by

$$I^{\mathrm{M}}(\Theta) = I_{0}^{\mathrm{M}} \left[1 + p_{\Lambda} a_{\Lambda}^{\mathrm{M}} \cos \Theta \right]$$

thus a_{Λ}^{M} can be obtained as:

$$a_{\Lambda}^{\rm M} = \frac{1}{p_{\Lambda}} \frac{I^{\rm M}(0^{\circ}) - I^{\rm M}(180^{\circ})}{I^{\rm M}(0^{\circ}) + I^{\rm M}(180^{\circ})}$$

U	U	11 /	11 11
	$^{5}_{\Lambda}\mathrm{He}$	$^{11}_{\Lambda}{ m B}$	$^{12}_{\Lambda}{ m C}$
a_Λ	-0.68	-0.81	-0.73
$a^{\mathrm{M}}_{\Lambda}(T^{\mathrm{Th}}_{p}=0)$	-0.30	-0.18	-0.16
$a^{\rm M}_{\Lambda}(T^{\rm Th}_p = 30 {\rm ~MeV})$	-0.46	-0.39	-0.37
$a^{\rm M}_{\Lambda}(T^{\rm Th}_{p} = 50 {\rm ~MeV})$	-0.52	-0.55	-0.51
$a_{\Lambda}^{\tilde{M}}(T_{p}^{Th} = 70 \text{ MeV})$	-0.55	-0.70	-0.65
KEK-E462 (prel.)	0.07 ± 0.08		
KEK-E508 (prel.)		0.11 ± 0.44	-0.44 ± 0.32
	-		

Table 2: OME asymmetry parameters for ${}_{\Lambda}^{5}$ He, ${}_{\Lambda}^{11}$ B and ${}_{\Lambda}^{12}$ C

Data from T. Maruta et al., HYP2003, nucl-ex/0402017, Nucl. Phys. A (to be published)

