

Esperimento AUGER: status e primi risultati

Raffaella Bonino, Simone Maldera

Raggi Cosmici Ultra-Energetici

- spettro = legge di potenza (~ E^{-2.7})
- 2 cambi di pendenza

UHECR:

- RC con $E \ge 10^{19} \text{ eV}$
- $flusso = 1/km^2 \cdot secolo$
- probabile origine extragalattica

Taglio GZK

- $E_{GZK} = 6.10^{19} \text{ eV}$
- taglio = perdite di E dovute alle interazioni con i $\gamma_{2.7K}$: $p + \gamma \rightarrow n + \pi^+$ $p + \gamma \rightarrow p + \pi^\circ$
- $\Delta E \propto n^{\circ}$ collisioni $\propto d_{source}$

se
$$d_{\text{source}} > 10^2 Mpc \Rightarrow E_p < 10^{20} eV$$

eventi a E>E_{GZK} provengono da sorgenti vicine oppure il taglio GZK non esiste???

07/03/2006

Eventi oltre il taglio GZK

 HiRes : spettro in accordo con taglio GZK

 AGASA : vede eventi oltre E_{GZK}
 → non ∃ taglio GZK

• AUGER : ???

Pierre Auger Collaboration

16 nazioni 60 istituzioni ~370 scienziati

Italy Czech Republic France Germany Greece Poland Slovenia Spain United Kingdom Argentina Australia Brazil Bolivia^{*} Mexico USA Vietnam^{*}

*Associate Countries

Spokesperson: Alan Watson

sito nord + sito sud = completa copertura del cielo

Requisiti dei 2 siti:

- latitudine tra 30° e 45°
- superficie di 3500 km² libera e possibilmente piana
- altitudine tra 500 e 1500 m s.l.m.
- cielo poco nuvoloso, con buon visibilità e con poche sorgenti di luce
- accesso a comunicazioni radio

Sito Argentino

07/03/2006

Situazione attuale

Tecnica ibrida

2 tecniche di rivelazione indipendenti:

- Fluorescence Detector rivelatori di luce di fluorescenza
- Surface Detector
 rivelatori di luce
 Cherenkov

07/03/2006

Calibrazione SD

Procedura calibrazione:

In tank campione: si misura segnale prodotto da µ verticale attraverso telescopio muonico

In ogni tank: • si regola HV x avere rate=100 Hz sopra una soglia di 3 I^{peak}VEM
 • si regolano le soglie di trigger x avere I^{peak}VEM=50 ch ("on-line")

07/03/2006

07/03/2006

Calibrazione FD

Procedura calibrazione:

una sorgente di luce diffusa e calibrata posta nell'apertura illumina uniformemente la camera (ogni 3 mesi)

errore sistematico ~ 12%

07

Monitoraggio atmosfera

- Central Laser Facility
- LIDAR a ogni occhio dell'FD
- monitoraggio delle nuvole a ogni occhio
- Ianci di palloni aerostatici con radio-sonde

CLF: produce un "test beam" x studiare atmosfera (aerosol) caratteristiche FD (sincronizzato con SD)

Perché usare tecnica ibrida?

SD

- *duty cycle : 100%*
- distribuzione laterale
- tempi di arrivo → geometria sciami
- densità di particelle $\rightarrow E$

Misura incrociata di:
 geometria dello sciame
 energia
 composizione

Migliore comprensione delle sistematiche

FD

- duty cycle : 10%
- sviluppo longitudinale
 → composizione
- geometria sciami
- misura calorimetrica di E

Direzioni d'arrivo - SD

<u>1^a approx</u> \rightarrow *fronte piano* (con le 3 tanks che han contato di più) ricostruzione completa evento ($\theta_1, \phi_1, \text{core}_1, E_1$)

 $\frac{2^{a} \text{ approx}}{\text{ricostruzione completa evento } (\text{con tutte le tanks coinvolte})}$

07/03/2006

Direzione d'arrivo - FD

esempio di evento visto da 2 camere

Dalla geometria dei pixel triggerati si determina il piano che contiene l'asse dello sciame e il detector (SDP)

Direzioni d'arrivo – ibridi

FD → piano sciame-rivelatore (da geometria dei pixels)

 $SD \rightarrow Rp + \chi_0$ (da tempo di arrivo del fronte dello sciame)

3 tanks (E<3 EeV): < 2.2° 4 tanks (3<E<10 EeV): < 1.7° >4 tanks (E>10 EeV): < 1.4°

III congressino di sezione - INFN

punto visto dal pixel più alto e terra

Anisotropie intorno al GC

- AGASA ha rilevato un eccesso di eventi pari a 4.5 σ in un range di energie 1-2.5 EeV da una direzione prossima al GC
- SUGAR ha rilev 0.8-3.2 EeV da
- AUGER, che ha rilevato alcun e

in un range di energie 冫(ma ≠ da AGASA)

superiore, non ha rossima al GC

nessun eccesso rilevato

Auger : primi risultati (spettro in energia)

07/03/2006

Sd : Determinazione energia

Il segnale a 1000 metri dal core dello sciame (S_{1000} o "ground parameter") viene calcolato per ogni evento, usando la distribuzione laterale di densita'.

S₁₀₀₀ e' proporzionale all'energia del primario

Lateral distribution function (LDF) NKG LDF:

◊ posizione del core dello sciame

♦ **S1000**

$$f_{LDF} = K \left(\frac{r}{r_{\rm s}}\right)^{-\beta} \left(1 + \frac{r}{r_{\rm s}}\right)^{-\beta}$$

Nishimura-Kamata-Greissen

Maximum Likelihood fit:

 $\mathbf{L} = \prod_{i} \mathbf{f}_{P}(\mathbf{n}_{i}, \mu_{i}) \prod_{j} \mathbf{f}_{G}(\mathbf{n}_{j}, \mu_{j}) \prod_{k} \mathbf{f}_{sat}(\mathbf{n}_{k}, \mu_{k}) \prod_{l} \mathbf{f}_{zero}(\mathbf{n}_{l}, \mu_{l})$

- Segnale < 15 VEM => probabilita' Poissoniana
- Segnali > 15 VEM => probabilita' Gaussiana
- tank sature => limite inferiore
- tank senza segnale => limite superiore

Recupero segnali saturi 📈

saturazione ADC

saturazione pmt

III congressino di sezione - INFN

time bins (25 ns)

Errore sulle coordinate del core: $\sim 50 \text{ m} \text{ per S}_{1000} > 30 (E > 5 EeV)$ Errore su S_{1000} indotto dalle fluttuazione del segnale nelle tank

07/03/2006

S1000

Fluttuazioni del segnale a diverse distanze dall'asse

Protone 10EeV

il segnale a 1000 m dal core e' il miglior stimatore dell'energia

dipendenza dai modelli nella conversione in energia!!!

intercalibrazione con misure Fd (Eventi Ibridi)

FD: ricostruzione in energia

Energia => integrale del profilo longitudinale dello sciame

Emissione di fluorescenza

$$E = \frac{E_c}{X_0} \int n_e(X) \, dX$$

Ec = 81 Mev
$$X_0 = 37 \text{ g cm}^{-2}$$

III congressino di sezione - INFN

Sistematiche Energia Fd

Calibrazione (n. di fotoni all'apertura del telescopio) $\sim 12\%$

Conversione a n. di fotoni all'asse dello sciame~ 12%(geometria + monitoraggio atmosfera + sottrazione luce Cherenkov)

Conversione a energia depositata~ 15%(fluorescenze yield 13%, sistematiche dovute a fattori ambientali 8%)

Correzione per energia non vista

~3%

Incertezza totale sull'energia ricostruita: ~ 25%

07/03/2006

conversione S1000 energia: CIC + eventi ibridi

constant intensity cut:

la profondita' atmosferica attraversata varia da 870 gcm⁻² (θ =0°) a 1740 gcm⁻² (θ =60°)

A parità di energia del primario, all'aumentare dell'angolo $\theta~{\rm S}_{1000}$ e' attenuato

CIC: correzione empirica della dipendenza da θ $S_{38} = S1000 / CIC(\theta)$

 S_{38} : S1000 che si avrebbe se il primario avesse avuto $\theta = 38^{\circ}$

07/03/2006

07/03/2006

Conversione S₃₈-energia primario

S₃₈ è correlato con l'energia misurata dal Flourescenze Detector usando una selezione degli eventi ibridi

Data Set e apertura

Dati utilizzati: 1 Gennaio 2004 - 5 Giugno 2005

Zenith angles: 0 - 60°

 $\mathbf{E} < \mathbf{3} \cdot \mathbf{10}^{18} \, \mathrm{eV}$

Accettanza totale: 1750km² sr yr (~ AGASA)

Eventi Sd : ~180 000

Eventi ibridi ~10%

Auger Energy Spectrum

07/03/2006

Confronto con HiRes1 & AGASA

* Auger south in costruzione : funzionanti 918 (su ~1600) tank 3 su 4 telescopi

* in presa dati dal 1 Gennaio 2004

- * risoluzione angolare: sd 2.2 1.4ibrido ~ 0.6
- * ricostruzione in energia: Fd ~ 25% sd (CIC + ibridi) 30% a 3EeV 50% a 100EeV * Drimo anottro pubblicato

* Primo spettro pubblicato

Evento ibrido

SDP Id 850018 Eye Id: 1

ういご

07/03/2006

III congressino di sezione - INFN

Systematic errors

07/03/2006

S(1000) & coordinate core

Errore sulle coordinate del core: ~50 m per $S_{1000} > 30$ (E > 5 EeV) Errore su S₁₀₀₀ dalle fluttuazione del segnale nelle tank

esempio di evento ibrido

Sd: ricostruzione angolare

direzione di arrivo del primario ottenuta dai tempi di arrivo del fronte dello

risoluzione: $< 1.3^{\circ}$ nel caso peggiore (3 tank, E<3EeV) $< 0.8^{\circ}$ (4 tank, 3<E < 10 Eev) $< 0.6^{\circ}$ (5 tank, E>10 EeV)

07/03/2006

