

III Congressino di sezione Marialaura Colantoni*

*Universita' del Piemonte Orientale and INFN-To

Primi risultati della misura dell'effetto Primakoff nell'esperimento COMPASS

The COMPASS setup

27/02/2006

The polarizability (electric α and magnetic β) relates the average dipole (electric \vec{p} and magnetic $\vec{\mu}$) moment to an external electromagnetic field

$$\vec{p} = \alpha \vec{E}$$
$$\vec{\mu} = \beta \vec{H}$$

27/02/2006

Pion polarizabilities

The pion polarizabilities can be described in the framework of the Chiral Perturbation Theory (χ PT) based on the chiral symmetry of QCD and Goldstone theorem using the effective chiral lagrangian.

Chiral dynamics describes:

- properties
- production
- decay amplitude
- low energy interactions

of the Goldstone bosons (π , η , K,..) among themselves and with γ 's

 \mathcal{L}_{QCD} (quark,gluon) \rightarrow at low energy $\rightarrow \mathcal{L}_{eff}(\pi, K, \eta, ...)$

Pion polarizabilities

The χ PT through the effective lagrangian \mathcal{L}_{eff} , where the coupling constant are measured experimentally, provide prediction for the $\bar{\alpha}_{\pi}$ and $\bar{\beta}_{\pi}$: $4\alpha_{f}$ (r_{2} , r_{10})

$$\overline{\alpha}_{\pi} = \frac{\pi \alpha_f}{m_{\pi} f_{\pi}^2} \left(L_r^9 + L_r^{10} \right)$$

The numerical value are ^[1]: $\overline{\alpha}_{\pi} = (2.4 \pm 0.5) \cdot 10^{-4} \, fm^3$ $\overline{\beta}_{\pi} = (-2.1 \pm 0.5) \cdot 10^{-4} \, fm^3$

Other models (dispersion sum rules^[2], QCD sum rule^[3], lattice calculations^[4],...)

2.4·10⁻⁴ fm³ < $\overline{\alpha_{\pi}}$ < 8 ·10⁻⁴ fm³ -8.0·10⁻⁴ fm³ < $\overline{\beta_{\pi}}$ < -2.1 ·10⁻⁴ fm³

[1] U. Burgi, Phys.Lett. B 377 (1996) 147 - **8**. U
[2] L.V Fil'kov et al., Eur. Phys. J. A5 (1999) 285
[3] M.J. Lavelle et al., Phys. Lett. B 335 (1994) 211
[4] W. Wlicox., Phys. Rev D 57 (1998) 6731

27/02/2006

Experimental methods:

Experimental values

Data	Reaction	α [10 ⁻⁴ fm ³]	Data	Reaction	(α+β) [10 ⁻⁴ fm ³]
Lebedev	$\gamma p \rightarrow \gamma \pi^+ n$	20±12	Serphukov	$\pi Z \rightarrow \pi Z \gamma$	$1.4 \pm 3.1 \pm 2.8$
PLUTO	$\gamma\gamma \rightarrow \pi^+\pi^-$	19.1 ± 4.8±5.7	Data	Reaction	(α-β) [10 ⁻⁴ fm ³]
DM1	$\gamma\gamma \rightarrow \pi^+\pi$	17.2 ± 4.6	Serphukov	$\pi Z {\rightarrow} \pi Z \gamma$	13.6±2.8
DM2	$\gamma\gamma \longrightarrow \pi^+\pi$	26.3±7.4	MAMI-A2	$\gamma p \longrightarrow \gamma \pi^+ n$	11.6±1.5±3.0±0.5
MARK II	$\gamma\gamma \longrightarrow \pi^+\pi$	2.2 ± 1.6			
Serphukov	$\pi Z \rightarrow \pi Z \gamma$	$6.8 \pm 1.4 \pm 1.2$	The experimental values are effected		

by too large statistical and/or systematic errors

The Primakoff reaction

γ*, k

 $t = (p_2' - p_2)^2$

Electric & Magnetic polarizabilities

Z, **p**₂

For the reaction $\pi + Z \rightarrow \pi' + Z + \gamma$ one measures the Primakoff cross section:

$$\frac{d^{3}\sigma}{dtd\omega d\cos\vartheta} = \frac{\alpha_{f}Z^{2}}{\pi\omega} \frac{t-t_{0}}{t^{2}} \frac{d\sigma_{\pi\gamma}(\omega,\vartheta)}{d\cos\vartheta} F_{A}(t) \Big|^{2}$$

 ω photon energy in the antilab system

 $t = (p'_2 - p_2)^2$

$$t_0 = \left(\frac{m_{\pi}\omega}{p_{beam}}\right)^2 \qquad F_A(t) \sim 1$$

 θ real photon scattering angle

$$\frac{d\sigma_{\pi\gamma}(\omega,\vartheta)}{d\cos\vartheta} = \frac{2\pi\alpha_{f}^{2}}{m_{\pi}^{2}} \cdot \left[F_{\pi\gamma}^{Pt} + \frac{m_{\pi}\omega^{2}}{\alpha_{f}} \frac{\alpha_{\pi}(1+\cos^{2}\vartheta) + \beta_{\pi}\cos\vartheta}{\left(1+\frac{\omega}{m_{\pi}}(1-\cos\vartheta)\right)^{3}} \right]$$

27/02/2006

Marialaura Colantoni

π', **p**₁'

Z, p₂'

 $s = (p_1' + k')^2$

The goals

To extract α_{π} and β_{π}

Assuming $(\alpha_{\pi} + \beta_{\pi}) = 0$

- Fit the ratio in the lab system
- $(w = E_{\gamma}/E_0)$

INDEPENDENTLY

- Fit the 2-dim cross-section in the alab system
 - the MC-simulations are needed to correct for acceptance

10

Experimental conditions during the 2004 Pilot hadron run (7 days)

- Beam: 190 GeV/c; ~10⁶ π/s, 4.8 s / 16 s spill structure 190 GeV/c; ~10⁸ μ/s
- Targets: 1.6 3mm Pb (~25% 50% X₀), 7 mm Cu, 23 mm C
- 3 possible triggers:
 - Veto x Hodoscope hit x ECal2 ($E\gamma > 50$ GeV)
 - Veto x ECal2 (Eγ>100 GeV)
 - Beam x Beam-Veto x Beam Killer

Typical reconstructed event:

27/02/2006

Marialaura Colantoni

OMP A

Preliminary analysis of the 2004 COMPASS data less than 1/10 of collected events

Select $\pi^- + Pb_{(3mm)} \rightarrow \pi^- + Pb_{(3mm)} + \gamma$

Cuts:

Position of the reconstructed interaction vertex

Energy of the final state(π - γ)

27/02/2006

Primakoff signature

- Background contribution will be also estimated using empty target runs
- Systematic effect will be estimated using a sample of data collected with **muon beams** in the same experimental conditions. Very peculiar features of the COMPASS experiment

Polarizabilities measurement summary

- Different targets (Pb, Cu, C) \rightarrow Z² dependence in the cross section
- Point like contribution via the reaction: $\mu + Z \rightarrow \mu + Z + \gamma$
- Expected error on polarizabilities $\delta \alpha \approx 0.4 \cdot 10^{-4} \text{ fm}^3 \ (\approx \sigma_{\text{theory}})$
- Also <u>kaon polarizabilities</u> can be measured for the **first time**

Kaon polarizability

The K cross section scales down as $m^{-1} \to 3$ times smaller compared to the π one. The polarizability goes as $\alpha_h = \frac{4\alpha_f}{m_{\star}F_{\star}^2}(L_r^9 + L_r^{10}) \to \alpha_K = \frac{\alpha_{\pi}}{5.4}$

Assuming : $3 \cdot 10^5$ Kaon/s @ 190 GeV/c we expect 10^3 Events/day

For this measurement the CEDARs counters are needed

 $F_{3\pi}$ allows to verify the low energy theorem:

$$F_{3\pi}(0) = \frac{F_{\pi}(0)}{\sqrt{4\pi\alpha_f} f^2}$$

 $F_{\pi}(0)$ is the coupling constant for the 1st diagram α_{f} is the fine structure constant f is the charged pion decay constant

27/02/2006

$F_{3\pi}$ measurement

[5] Antipov et al., Phys Rev D36 21 (1987) [6] Ll. Ametler, et al., Phys. Rev D 64, 094009, 2001

27/02/2006

Conclusions

- The COMPASS pilot 2004 hadron run was successfully completed; collecting an integrating beam flux of more than $10^{11} \pi$ for the polarizabilities measurement
- The preliminary analysis shows clearly the signature of the Primakoff reaction and that a statistic of at least 4 times larger than in the previous experiment is expected (30-40k vs 7k events).
- The analysis of 3π events is in progress