Recent results of the FINUDA experiment

Francesca De Mori

The FINUDA physics program

- ✓ Λ Hypernuclei spectroscopy with the (K^{-}_{stop} , π^{-}) reaction on several different nuclei *(at the same time!)*
 - ✓ Tool to test
 - \checkmark Theoretical models of ΛN (YN) potentials
 - Single particle nuclear models
 - Existence of bound states with strangeness

Hypernuclear weak decays

Study of baryon-baryon weak processes in nuclear matter:

 $\checkmark \Lambda \rightarrow \pi N \text{ vs } \Lambda N \rightarrow NN \text{ (4-baryon weak interaction)}$

Other topics:

- Search for neutron rich hypernuclei
- Study of hypernuclei rare decay channels
- Σ -hypernuclei spectroscopy (if they exist)

Existence of deeply bound kaonic states

Deeply bound kaonic nuclei

(S=-1) bound \bar{K} -nucleus systems Do they exist?

Crucially depends on shape of \overline{K} -nucleus potential

YES (very deep attractive optical potential) 150-200 MeV Akaishi-Yamazaki [PLB535(2002)70; PRC 65 (2002) 044005] Kaiser et.al, [NPA594 (1995) 325]

NO (shallow optical potential) 50-75 MeV→small B & large Γ Schaffner-Bielich et.al [N.P. <u>A669</u> (2000)], Ramos et.al [N.P. <u>A671</u> (2000) 481], Cieply et.al [N.P. <u>A696</u> (2001) 173]

If found, they would provide fundamental data about:

K-N potential, Λ (1405), nuclear compressibility, chiral symmetry restoration, effective kaon mass inside nuclear matter (strangeness condensation, neutron stars...), ...

K-nucleus bound states: theoretical expectations

The $\overline{K}N^{(I=0)}$ strong interaction stabilizes the nuclear matter attracting the surrounding nucleons Simpler system (*strange dibaryion*): K-pp ($^{2}_{\kappa}H$)

K-nucleus bound states features: theoretical expectations

- Doté et al. use an Antisymmetryzed Molecular Dynamics model to predict kaon bound system masses (PLB590(2004),51)
 - Prediction of the shrinking effect due to KN interaction
 - The bound states in the table lie below the $\Sigma\pi$ threshold narrow states, experimentally identifiable
 - High nuclear density and low temperature systems

Congressino ai sezione, 27/02/06

Search methods for deeply bound K-states

Invariant mass spectroscopy

- Based on the kaonic nuclear states feature of decaying into hyperons
 - $(K^-pp) \rightarrow \Lambda + p$
 - $(K^-ppn) \rightarrow \Lambda + d$
 - Typically:
 - p_{^,p}~ 500 MeV/c
 - p_π < 200 MeV/c
 - p_{decay p} ~ 500 MeV/c
- Necessary to fully reconstruct all the particles emitted in the decay!
- The decay occurs at rest: angular correlation between the emitted particles required!

Missing mass spectroscopy

 Measurement of the momentum of the monochromatic recoiling particle in a A(K,N)X reaction
 Congressino di sezione, 27/02/06

FINUDA @ DAΦNE FOPI @ GSI

With stopped K⁻:
•KEK-PS E471, E549
•FINUDA @ DAΦNE

•With in flight K⁻: •BNL-AGS E930 •KEK-PS E548

Search of kaonic states (with two nucleons) in FINUDA with the invariant mass method

Evidences of the strange dibaryon in FINUDA with the invariant mass method

Congressino di sezione, 27/02/06

K pp identification (1): direct observation of a Λ

the acceptance of the apparatus cuts the Λ 's with momentum less than 300 MeV/c, due to the momentum threshold for π^-

Congressino di sezione, 27/02/06

K pp identification (2): back-to-back p- Λ pair

- When a kaon interacts with two nucleons and an hyperon-nucleon pair (Λp , $\Sigma^0 p$, $\Sigma^+ n$) is produced, they are expected to be emitted in opposite directions, ignoring a f.s.i. inside the nucleus.
- About the 5% of events in FINUDA have a (Λp) coincidence
- Event selection: $\cos\theta_{\rm YN} < -0.8$

Invariant mass of the (Ap) system: light targets

- Two nucleon absorption: the mass of the system should be close to m_K+2m_p ≈ 2370 MeV (minus the separation energy of the two protons < 20 MeV, & kinetic energy of the system)
- Significant mass decrease of the (K-pp) system!
 - Consistency of the hypothesis of a bound state !!!!!

Acceptance correction and result

The two nucleon absorption $K^-pp \to \Sigma^0 + p$

And then the Σ^0 decay,may contribute in the low-mass region (<2.22GeV/c²). M = (2255 ± 9) MeV Yield ≈ 10 ⁻³ stopped K⁻

Congressino di sezione,

Theoretical calculation of K⁻pp state

- Yamazaki and Akaishi [Phys. Lett. B 535 (2002) 70] B= 48MeV, Γ=61MeV
- Akaishi, Dote and Yamazaki [Phys. Lett. B 613 (2005) 140]
 B= 86MeV, Γ=58MeV
 - Relativistic effect
 - Enhanced KN interaction
- Ivanov et al. [nucl-th/0512037] B= 115MeV, Γ^{non-pionic}=28MeV (Γ^{pionic}=0MeV)

Search for K⁻pn bound states

Invariant-mass spectroscopy for

$$K^-pn \rightarrow \Lambda + n$$
, $\Sigma^- + p$

- including a neutron in the final state
- Two kinds of "*K*-*pn*" states are expected.
 - Isobaric analog state of K⁻pp (pn: T=1)
 - K⁻d (pn: T=0) (much less bound)
 - Isospin dependence of KN interaction
- Λ tagging and back-to-back Λ n selection
- Σ^{-} tagging and back-to-back $\Sigma^{-}p$ selection

Λ / Σ^{-} selection and back-to-back correlation

Few comments on K⁻pn analysis

- Not enough statistics (~100 each) to say something sure.
 Waiting for the new data taken in '06-'07.
- Theoretically, a loosely-bound K⁻pn bound state is predicted by Yamazaki and Akaishi (PLB535(2002)70).
- The branching ratio of Λ +n to Σ -+p will be obtained.

Search of the strange tribaryon S⁰ with FINUDA

KEK-E471 experimental indications of the strange tribaryons

KEK-PS E471 miss. mass method

K-pnn state: signal observed in the semi-inclusive p momentum spectrum, in coincidence with a fast π -

S⁰(3115), T = +1, S=-1 M = 3117.7 ^{+3.8}_{-2.0} (sys) ± 0.9(stat) MeV/c² (B ≈ -193 MeV) Γ< 21.6 MeV/c² (95% C.L.)

Missing-mass spectroscopy @ FINUDA

- It is well known that in many reaction ⁶Li behaves like a real deuteron bound to a real α–particle in relative s-wave
 - Behaviour observed in
 - $(\pi^+, 2p)$ reactions in flight
 - $(\pi^{-}, 2n)$ reactions at rest
- Looking for a signal due to the threenucleon K-bound state (S⁰(3115)) as seen by KEK-PS E471 on a "quasi-⁴He" substructure of ⁶Li
 - $K_{stop}^{-}+^{4}He \rightarrow (K_{pnn})+p$
 - The proton momentum spectrum should exhibit a peak at about 500 MeV/c

Sizeable signal at about 500 MeV/c in the inclusive proton momentum spectrum not acceptance corrected

Contributions from hyperfragment non-mesonic decays

⁶Li target, energy loss *corrected*

Congressino di sezione, 27/02/06

Tribaryon (Kpnn) search with the missing mass technique in FINUDA (2)

Study of semi-inclusive proton/pion spectra on ⁶Li (not acceptance corrected) : strong correlation of the 500 MeV/c protons with high momentum π⁻

Tribaryon (Konn) search with the missing mass technique in FINUDA (3)

If we observe a proton from S^0 formation and a pion from its decay:

 K^-_{stop} + ⁴He → S⁰ (3115) + p S⁰ (3115)→ Σ⁻NN we expect no strong angular correlation between proton and pion

INSTEAD: BACKWARD CORRELATION OBSERVED BETWEEN PROTON AND PION!

This does NOT look like a signal from S^0 .

Interpretation of the peak

• Kaon absorption by quasi-deuteron (⁶Li: α +d)

 $K^- + ``d" \to p + \Sigma^-$

- Fast pion in opposite direction of the proton.
- Large branching ratio
- Rare decay of ⁴_AHe into p+t
 - Fast pion from ${}^{6}_{\Lambda}$ Li^{*} formation? / Triton not observed(Δ E/ Δ x on μ -strip detectors)
 - Proton momentum: 505 MeV/c
 - Small decay branching rate.
- Formation and decay of kaonic nuclei
 (K-ppnnn from ⁶Li or K-pnn from α-cluster)
 - Fast pion could be from Σ^- (slower Σ^- than that from K⁻+d).
 - No strong angular correlation between p and π expected.

Kaon absorption by quasi-deuteron is most probable.

Congressino di sezione, 27/02/06

Summary and Conclusions

- FINUDA at DAΦNE is a unique facility for the study of the K⁻A interaction
- Possibility of studying the existence of predicted deeply bound kaonic states from a twofold point of view
 - Invariant mass method (new, due to the full event reconstruction in the apparatus, with high resolution)
 - *Clear indications* for the existence of deeply bound kaonic systems, directly observed for the first time!
 - Waiting for next data taking to increase statistics for the kaonic systems studied:
 - K⁻pn $\rightarrow \Lambda n$, K⁻pn $\rightarrow \Sigma^{-}p$
 - K⁻ppn $\rightarrow \Lambda d$
 - Missing mass method (classical, but less precise)

Formazione stati legati K-nucleo

K⁻ fermati nella targhetta formano atomi kaonici, dopo la diseccitazione il kaone annichila sul nucleo

Modalità di assorbimento del kaone: K- + A

- Produzione quasi libera di iperoni $K^- N \rightarrow Y\pi$ ($\approx 80\%$)
- Assorbimento su 2 nucleoni K⁻ NN \rightarrow YN (\approx 20%) con Y = Λ o Σ
- Formazione di ipernuclei
- Formazione di stati legati K-nucleo

Ricerca di stati legati e ipernuclei Σ

- Ci si aspetta che gli ipernuclei Σ *non* esistano
 - − La conversione $\Sigma N \rightarrow \Lambda n$ rilascia 80 MeV e la Λ ha una notevole probabilità di uscire dal nucleo
 - Per giustificare l'esistenza degli ipernuclei bisognerebbe ipotizzare una soppressione del processo di conversione $\Sigma N \rightarrow \Lambda n$
- Alcune osservazioni sperimentali di stati ${}^{9}{}_{\Sigma}$ Be, ${}^{12}{}_{\Sigma}$ C, ${}^{12}{}_{\Sigma}$ Be, ${}^{12}{}_{\Sigma}$ C, non confermate in esperimenti ad alta statistica
- Unica osservazione confermata: ${}^{4}_{\Sigma}$ He $(\Sigma \equiv \Sigma^{0}, \Sigma^{+})$
 - Si può considerare un'eccezione, per la sua particolare struttura

Potenzialità di FINUDA per

