

Recent Results From NA48/2 Experiment @ CERN-SPS

Simone Bifani University of Torino – Experimental Physics Department INFN – Torino

on Behalf of the NA48/2 Collaboration Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Torino Group: Simone Bifani, Cristina Biino, Silvia Goy Lopez, Flavio Marchetto

IV Congressino di Sezione January 23rd 2007

NA48/2 Experimental Setup

Ê

Detector

Muon veto sytem

Hadron calorimeter

Liquid krypton calorimeter

Drift chamber 4

Anti counter 7

Helium tank

Drift chamber 3

Drift chamber 2

Anti counter 6

Beam pipe

Drift chamber 1

Keylar window

Hodoscope

Magnetic spectrometer (4 DCHs): > 4 view / DCH -> high efficiency

> $\sigma_{P}/P = 1.0\% \oplus 0.044\% \cdot P [GeV/c]$

Hodoscope:

- > Fast trigger
- > σ_t = 150ps

Electromagnetic calorimeter (LKr):

- > High granularity, quasi-homogeneous
- > $\sigma_{\rm E}/{\rm E}$ = 3.2%/ $\sqrt{{\rm E}} \oplus$ 9%/E \oplus 0.42% [GeV]

Hadron calorimeter, muon and photon vetoes

Trigger:

- > Fast hardware trigger (L1): hodoscope & DCHs multiplicity
- > Level 2 trigger (L2): on-line processing of DCHs & LKr information

Run periods:

- > 2003: ~ 50 days
- > 2004: ~ 60 days

Total statistics in 2 years:

- > K[±] -> π[±]π⁺π⁻: ~ 4·10⁹
- > K[±] -> $\pi^{\pm}\pi^{0}\pi^{0}$: ~ 1.10⁸

-> >200 TB of data recorded

A view of the NA48/2 beam line

Rare K[±] decays can be measured down to BR ~ 10^{-9}

CP Violating Charge Asymmetry in K[±] -> π[±]π⁺π Decay

CP-Violation History

Major milestones in CP-Violation history:

- > 1964: Indirect CP-Violation in K⁰ (J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay)
- >1988, 1999: Direct CP-Violation in K⁰ (NA31, E731, NA48, KTeV)
- > 2001: Indirect CP-Violation in B⁰ (BaBar, Belle)
- > 2004: Direct CP-Violation in B⁰ (Belle, BaBar)

Look for CP-Violation in K[±] (no mixing -> only Direct CPV is possible)

Introduction (II)

Theoretical predictions:

- > Standard Model:
 - $A_{g} = 10^{-6} \div 5 \cdot 10^{-5}$
- > Models Beyond the SM: enhancement of the A_g value

Experimental results:

- * "Charged" mode: A_g = (22 ± 15_{stat} ± 37_{syst})·10⁻⁴ (HyperCP - 54·10⁶ evt.)
- > "Neutral" mode: A_g = (2 ± 19)·10⁻⁴ (TNF - 620·10³ evt.)

Introduction (III)

What's new in NA48/2 measurement?

- > Simultaneous K⁺ and K⁻ beams, superimposed in space, with momentum spectra (60±3) GeV/c
- > Equalize K⁺ and K⁻ acceptances by frequently alternating polarities of relevant magnets
- > Detect asymmetry exclusively considering slopes of ratios of normalized u distributions

Run	SuperSample	∆ g · 10 ⁴	X ² of the R(u) fit
2003	0	-0.8±1.8	30/26
	1	-0.5±1.8	24/26
	2	-1.4±2.0	28/26
	3	1.0±3.3	19/26
2004	4	-2.0±2.2	18/26
	5	4.4±2.6	20/26
	6	5.0±2.2	26/26
	7	1.5±2.1	10/26
	8	0.4±2.3	23/26
Combined		0.6±0.7	

"Cusp" Effect in K[±] -> $\pi^{\pm}\pi^{0}\pi^{0}$ Decay

A "Cusp"

- > From K[±] -> $\pi^{\pm}\pi^{0}\pi^{0}$ decay we observed an anomaly in the M_{00}^{2} invariant mass distribution in the region around $M_{00}^{2} = (2m_{\pi^{+}})^{2}$ = 0.07792 (GeV/c²)²
- > This anomaly has been interpreted as a final state charge exchange scattering process of K[±] -> $\pi^{\pm}\pi^{+}\pi^{-}(\pi^{+}\pi^{-} -> \pi^{0}\pi^{0})$
- > The parameter a_0-a_2 (difference between the S-wave $\pi\pi$ scattering lengths in the isospin I=0 and I=2 states) can be precisely measured using this sudden anomaly ("cusp")

Event Selection

Standard Dalitz plot parameterization shows deficit in data before "cusp":

Interpretation

Re-scattering model: two amplitudes contribute to $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

$$M(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}) = M_{0} + M_{1}$$

> M₀: Direct Emission

> M_1 : Charge Exchange in final state of K[±] -> $\pi^{\pm}\pi^{-}(\pi^{+}\pi^{-} \rightarrow \pi^{0}\pi^{0})$

The singularity in the invariant mass spectrum at $\pi^+\pi^-$ threshold is mainly caused by the destructive interference of M_0 and M_1

The effect is present below the threshold and not above it (re-scattering model at one-loop (N. Cabibbo: PRL 93 (2004) 121801))

Rare K[±] Decays

Rare K[±] Decays

Statistics usually at least one order of magnitude above previous experiments. Several channels not yet observed.

- > $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ (4.09 ± 0.09)·10⁻⁵
- > $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} v$ (2.2 ± 0.4)·10⁻⁵
- > $K^{\pm} \rightarrow \pi^{+}\pi^{-}\mu^{\pm}v$ (1.4 ± 0.9)·10⁻⁵
- > $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ (2.75 ± 0.15)·10⁻⁴
 - (1.10 ± 0.32)·10⁻⁶

Silvia Goy Lopez Simone Bifani

> K[±] -> π[±]e⁺e⁻γ

> K[±] -> π[±]γγ

- > K[±] -> π[±]π⁰γγ
- > $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ (2.88 ± 0.13)·10⁻⁷

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$

Two amplitudes:

- > Inner Bremsstrahlung (IB)
- > Direct Emission (DE)

Interference (INT) is possible between IB and electric part of DE

Based on a partial sample of 2003 data

Frac(INT) CL 68% CL 95% CL 99% -0.01 -0.02 -0.03 -0.04 -0.05 0.02 0.025 0.03 0.035 0.04 0.045 0.05 ρ = -0.92 Frac(DE)

> The preliminary result on the Direct CP violating charge asymmetry in K[±] -> $\pi^{\pm}\pi^{+}\pi^{-}$ based on the whole statistics is:

$$A_g = (-1.3 \pm 1.5_{stat} \pm 0.9_{trig} \pm 1.4_{syst}) \cdot 10^{-4}$$
$$= (-1.3 \pm 2.3) \cdot 10^{-4}$$

> A new "cusp" structure in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ was observed ($\pi\pi$ final state charge exchange process of $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) which provides a new method for the extraction of the $\pi\pi$ scattering lengths:

$$(a_0 - a_2) \cdot m_{\pi^+} = 0.268 \pm 0.010_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.013_{\text{theor}}$$

> The first measurement of Direct Emission and Interference terms in K[±] -> $\pi^{\pm}\pi^{0}\gamma$ based on ~30% of the total statistics has been performed:

> The preliminary result on the Direct CP violating charge asymmetry in K[±] -> $\pi^{\pm}\pi^{+}\pi^{-}$ based on the 2003+2004 data sample (whole statistics) is:

$$A_g = (-1.3 \pm 1.5_{stat} \pm 0.9_{trig} \pm 1.4_{syst}) \cdot 10^{-4}$$
$$= (-1.3 \pm 2.3) \cdot 10^{-4}$$

> The result have ~10 times better precision than the previous measurements

> The errors are dominated by statistics

> A new "cusp" structure in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ was observed ($\pi\pi$ final state charge exchange process of $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) which provides a new method for the extraction of the $\pi\pi$ scattering lengths:

 $(a_0 - a_2) \cdot m_{\pi^+} = 0.268 \pm 0.010_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.013_{\text{theor}}$

> The measurement is based on a 2003 data sample and agrees both with another independent measurement and with the theoretical predictions

> Parameter a₂ directly measured for the first time even though with low accuracy:

$$a_2 \cdot m_{\pi^+} = -0.041 \pm 0.022_{\text{stat}} \pm 0.014_{\text{syst}}$$

Summary (III)

> The first measurement of Direct Emission and Interference terms in K[±] -> $\pi^{\pm}\pi^{0}\gamma$ based on a 2003 data sample (~30% of the whole statistics) has been performed:

> Frac(DE) = $(3.35 \pm 0.35_{stat} \pm 0.25_{syst})$ % Frac(INT) = $(-2.67 \pm 0.81_{stat} \pm 0.73_{syst})$ %

> A first evidence of a negative Interference has been found

CP Violating Charge Asymmetry

"Charged" Mode: K[±] -> π[±]π⁺π

Measurement Strategy

If K^+ and K^- acceptances are equal for the same u and v value, any difference between the experimental distributions would be a sign of Direct CP-Violation. Integrated over v, A_g can be extracted from a fit to the ratio R(u) using the PDG value for g:

$$\Delta g = g^{+} - g^{-} \ll 1$$

$$R(u) = \frac{N^{+}(u)}{N^{-}(u)} = n \frac{1 + g^{+} \cdot u + h \cdot u^{2} + ...}{1 + g^{-} \cdot u + h \cdot u^{2} + ...} \sim n \left[1 + \frac{\Delta g \cdot u}{1 + g \cdot u + h \cdot u^{2}} \right] \quad \rightarrow \quad A_{g} = \frac{\Delta g}{2g}$$

- > The normalization is a free parameter in the fit and Δg does not depend on it
- > For the "charged" mode a fit with linear function is suitable due to smallness of the slope g
- > u calculation:
 - » "Charged" mode: only the magnetic spectrometer is used
 - » "Neutral" mode: only the calorimeter is used

Acceptance (I)

Magnetic fields present in both beam line and spectrometer: this leads to residual charge asymmetry of the setup

SuperSample (SS) data taking strategy:

- > Beam line polarity (A) reversed on weekly basis
- > Spectrometer magnet polarity (B) reversed on daily basis

The whole 2003+2004 data taking is subdivided in 9 SS in which all the field configurations are present

Acceptance (II)

- > In each ratio the odd pions are deflected towards the same side of the detector (left-right asymmetry)
- > In each ratio the event at the numerator and denominator are collected in subsequent period of data taking (global time variations)

Acceptance (III)

> Double ratio: cancellation of global time instabilities (rate effects, analyzing magnet polarity inversion)

$$R_{U} = R_{US} \times R_{UJ} \implies f_{2}(u) = n^{2} \cdot (1 + \Delta g_{U} \cdot u)^{2}$$

$$R_{D} = R_{DS} \times R_{DJ} \implies f_{2}(u) = n^{2} \cdot (1 + \Delta g_{D} \cdot u)^{2}$$

> Double ratio: cancellation of local beam line biases effects (slight differences in beam shapes and momentum spectra)

$$R_{s} = R_{Us} \times R_{bs} \implies f_{2}(u) = n^{2} \cdot (1 + \Delta g_{s} \cdot u)^{2}$$

$$R_{J} = R_{UJ} \times R_{DJ} \implies f_{2}(u) = n^{2} \cdot (1 + \Delta g_{J} \cdot u)^{2}$$

> Quadruple ratio: both previous cancellations + left-right detector asymmetry cancellation

$$R = R_{US} \times R_{UJ} \times R_{DS} \times R_{DJ} \implies f_4(u) = n^4 \cdot (1 + \Delta g \cdot u)^4$$

The method is independent of K⁺/K⁻ flux ratio and relative sizes of the samples (important: simultaneous beams)

Simone Bifani

Systematic effect	Effect on $\Delta g \cdot 10^4$
Spectrometer alignment	±0.1
Momentum scale	±0.1
Acceptance and beam geometry	±0.2
Pion decay	±0.4
Accidental activity (pile-up)	±0.2
Resolution effects	±0.3
Total systematic uncertainty	±0.6
L1 trigger: uncertainty only	±0.3
L2 trigger: correction	-0.1±0.3
Total trigger correction	-0.1±0.4
Systematic & trigger uncertainty	±0.7
Raw ∆g	0.7±0.7
Δg corrected for L2 inefficiency	0.6±0.7

"Neutral" Mode: *K*[±] -> π[±]π⁰π⁰

Introduction

Statistical precision in A_a similar to "charged" mode:

- > Ratio of "neutral" to "charged" statistics: N⁰/N[±] ~ 1/30 (91.10⁶ K[±] have been selected in the 2003+2004 data sample)
- > Ratio of slopes: $|g^0/g^{\pm}| \sim 1/3$
- > More favourable Dalitz-plot distribution (gain factor ~1.5)

For u calculation only the energy of the two neutral pions in laboratory frame is used (only calorimeter information)

Run	SuperSample	∆g · 10 ⁴
2003	0	4.3±3.8
	1+2	0.5±5.0
	3	-2.0±8.2
	5	5.6±6.8
2004	6	4.7±5.1
2004	7	3.5±5.6
	8	-1.4±5.8
Combined		2.7±2.0

"Cusp" Effect in K[±] -> $\pi^{\pm}\pi^{0}\pi^{0}$ Decay

Results (I)

Try fitting different theoretical models to M_{00}^2 distribution and evaluate:

$$\Delta = \frac{\mathsf{Data} - \mathsf{Fit}}{\mathsf{Data}}$$

- > Fitting up to 0.097 (GeV/c^2)²
- > 5 fitting parameters: norm, g_0 , h', a_0 - a_2 and a_2
- > For final results pionium set to theoretical expectation and 7 bins around the "cusp" excluded from the fit in order to reduce sensitivity to Coulomb corrections

Rare Decays: $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$

Introduction (I)

- > Inner Bremsstrahlung (IB)
- > Direct Emission (DE)

Two type of contributions:

- > Electric (j=l±1) dipole (E₁)
- Magnetic (j=l) dipole (M₁)

Electric contributions come from $\,L^4$ CHPT Lagrangian, loops L^2 and are dominated by the IB term

Magnetic contributions are dominated by Chiral Anomaly

DE shows up only at order $O(p^4)$ in ChPT: is generated both by E and M contributions. Present experimental results seem to suggest a M dominated DE

Interference (INT) is possible between IB and electric part of DE:

- \rightarrow Measuring at the same time DE and INT gives measurement of M and E
- > CP-Violation could appear in INT

IB: $(2.75 \pm 0.15) \cdot 10^{-4}$ **PDG** (55 MeV < T^{*}_{π} < 90 MeV) DE: $(4.4 \pm 0.8) \cdot 10^{-6}$

INT: not yet measured

Introduction (III)

Interference found to be compatible with 0:

INT= $(-0.58^{+0.91}_{-0.83})\%$ of IB BNL E787 INT= $(-0.4 \pm 1.6)\%$ of IB KEK E470

-> Set INT = 0 and fit only DE (all measurements have been performed in the T_{π}^* region 55÷90 MeV to avoid K[±] -> $\pi^{\pm}\pi^{0}\pi^{0}$ background)

Experiment	year	# of events	DE BR 10^{-6}
Abrams [5]	1972	2100	$15.6 \pm 3.5 \pm 5.0$
Smith [18]	1976	2461	23 ± 32
Bolotov [19]	1987	140	$20.5 \pm 4.6^{+3.9}_{-2.3}$
E787 [20]	2000	19836	$4.7 \pm 0.8 \pm 0.3$
E470 [21]	2003	4434	$3.2 \pm 1.3 \pm 1.0$
E787 [22]	2005	20571	$3.5 \pm 0.6^{+0.3}_{-0.4}$
E470 [23]	2005	10154	$3.8 \pm 0.8 \pm 0.7$

Introduction (IV)

What's new in NA48/2 measurement?

- > Simultaneous K⁺ and K⁻ beams -> check for CP-Violation
- > Enlarged T_{π}^* region in the low energy part (0÷80 MeV)
- > y miss-tagging probability ~‰ for IB, DE and INT
- > Negligible background contribution (<1% of the DE component)

Event Selection (I)

Event selection:

- > Select 1 track and any number of clusters
- > Require 3 ys with E_y > 3 GeV outside 35 cm radius from π @ LKr ys and 10 cm away from other clusters
- > Charged vertex (z_c): calculate the K decay point as the position where the π^{\pm} track intersects the beam line
- > Selecting the γ pairing for the π^{0} :
 - » Three combinations are possible (choosing the wrong combination for the π^0 -> choosing the wrong odd γ (misstagging) -> distorts W)
 - » Two possible methods used: select the combination giving the best $\pi^{\rm O}$ or K^{\pm} invariant mass
- > Neutral vertex (z_n): from imposing π^0 mass to γ pairs; must be in agreement with charged vertex (within 400 cm)

Background (I)

Decay	BR	Background mechanism
K [±] -> π [±] π ⁰	(21.13 ± 0.14) %	1 accidental γ or hadronic extra cluster
K [±] -> π [±] π ⁰ π ⁰	(1.76 ± 0.04) %	1 missing or 2 overlapped γs
K [±] -> π ⁰ e [±] ν	(4.87 ± 0.06) %	1 accidental γ and e misidentified as a π
K [±] -> π ⁰ μ [±] ν	(3.27 ± 0.06) %	1 accidental γ and μ misidentified as a π
$K^{\pm} \rightarrow \pi^0 e^{\pm} v(\gamma)$	(2.66 ± 0.2)·10 ⁻⁴	e misidentified as a π
K [±] -> π ⁰ μ [±] ν(γ)	(2.4 ± 0.85)·10 ⁻⁵	μ misidentified as a π

Backgrounds can be rejected using particle ID, COG, mass and time cuts

Background (II)

Cut on overlapping γs (allows avoiding $T^*_{\pi} > 55$ MeV):

- > For every of the three γs in the event assume that its energy E_i is really the overlap of 2 γs of energies $E' = x \cdot E_i$ and $E'' = (1-x) \cdot E_i$
- > Solve for sharing fraction (x) imposing that the two π^0 must come from the same vertex
- > Reject event if any of the reconstructed π^0 vertex is compatible with charged vertex (within 400 cm)

In addition need to use MUV detector to avoid miss-reconstruction of track momentum due to $\pi \rightarrow \mu\nu$ decay in flight

After all cuts the background estimation is <1% of DE and can be explained in terms of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

Data/MC Comparison

In the 2003 data sample (~30% of the whole statistics) $220 \cdot 10^3$ K[±] have been selected:

- > After trigger efficiency correction good agreement between Data and MC for E_{γ} , in particular for E_{γ} > 5 GeV (used for final result)
- > The ratio W(Data)/W(MC_{\rm IB}) is in good agreement for IB dominated region and clearly shows DE

Systematics

Systematic checks have been performed using both Data and MC

Systematic effect	Effect on DE	Effect on INT
Miss-tagging	-	±0.2
Energy scale	+0.09	-0.21
Resolutions difference	< 0.05	< 0.1
LKr non linearity	< 0.05	< 0.05
BG contributions	< 0.05	< 0.05
Fitting procedure	0.02	0.19
L1 trigger	±0.17	±0.43
L2 trigger	±0.17	±0.52
Total	±0.25	±0.73

Systematic effects dominated by the trigger (both L1 and L2 have been modified in 2004)

