Il RICH-1 di COMPASS dopo l'upgrade: progetto, realizzazione e caratterizzazione del rivelatore durante la presa dati 2006

> M. Chiosso Congressino di Sezione, Torino 23/01/07



# The RICH upgrade

Introduction

- Motivation of the project
- The detector upgrade optics
   photon detectors
   read-out electronics
   installation
- > Preliminary characterization
- Project of an upgraded front-end chip: C-MAD

#### The COMPASS experiment COmmon Muon Proton Apparatus for Structure and Spectroskopy

#### 270 physicists, 25 institutes, 11 countries

high luminosity: ~ 4 · 10<sup>32</sup> cm<sup>-2</sup> s <sup>-1</sup>
fixed target
high energy µ<sup>+</sup> or hadron beams

COMPASS

nucleon structure measurements

hadron spectroscopy measurements



#### The COMPASS experiment COmmon Muon Proton Apparatus for Structure and Spectroskopy

- > Approved by CERN in October 1998
- > 2001: technical run
- > 2002-2004: physics runs
- > 2005: spectrometer upgrade (during shutdown of CERN accelerator)
- > 2006: resumed data taking
- > Up to now only muon data were taken, apart from a two weeks pilot run with pion beam, in 2004



#### The COMPASS spectrometer COmmon Muon Proton Apparatus for Structure and Spectroskopy





## Il RICH di COMPASS





- > radiator gas:  $C_4F_{10}$
- ➢ mirrors: 21 m<sup>2</sup> di superficie
- photon-detectors: Multi Wire Proportional Chamber (MWPC): 82944 18x18 mm<sup>2</sup> pad channels
- > Angular acceptance: horizontal  $\pm 250$  mrad, vertical  $\pm 180$  mrad
  - Wavelength range: 165 nm  $\rightarrow$  200 nm



## The upgrade motivations

overlap of

Upper Chambers

Lower Chambers

event images:

μ beam halo

- Readout electronics based on Gassiplex chip (3µs integration time)
- THE EXPERIMENTAL ENVIRONMENT:
   large photon flux in the center (µ-halo)
   → high uncorrelated background
- New photon detection with MaPMT:
   excellent time-resolution → µ-halo rejected
   using time information
- In addition, higher rate operation:
   previously: 20 kHz
   now: up to 100 kHz

# The upgrade project





## Performances

Before upgrade photons / ring ( $\beta \approx 1$ ) 14

σ<sub>θ-ph</sub> (β ≈1) : 1.2 mrad

 $\sigma_{ring} (\beta \approx 1) : 0.6 mrad$ 

 $2.5\sigma \pi/K$  separation up to 43 GeV/c

Expected after upgrade

photons / ring (β ≈ 1) 50-60 σ<sub>θ-ph</sub> (β ≈1) : 1.7 mrad

σ<sub>ring</sub> (β ≈1) : 0.4 mrad

2.5  $\sigma \pi/K$  separation up to 50 GeV/c



## Upgraded Rich resolution





## Phast photo-detection system

## Photon detectors : MAPMT

- wide wavelength range
- time resolution < 1 nsec</p>
- ➤ adequate for high rate operation up to which rate ?
- robust

## Summarising:

- good for next RICH generation
- but expensive for large surfaces

## $\rightarrow$ our challanges:

- large ratio of the collection and photocathode areas with minimal image distortion
  - $\rightarrow$  ratio = 7.3 achieved  $\leftarrow \rightarrow$  LENS SYSTEM, critical design
- > make use of the UV range ← → fused silica LENSES
- couple to a read-out system able to guarantee efficiency, high rate operation and to preserve time resolution



## 576 telescopes



- Purpose: focusing cherenkov photons on MaPMTs
- > UV transparent quartz lenses
- Large geometrical acceptance
- > Minimum image distortion





## Mapmt

## Hamamatsu R7600-03-M16:

bialkali photocathode, 18x18 mm<sup>2</sup> active surface, 16 pixels

UV extended glass window with borosilicate glass (200 – 700 nm)





#### PMT in soft iron box





## Single photoelectron detection



Large flat region between cross-talk and detection losses region



## **Detection at high rate**

#### mean signal amplitude versus rate/pixel

pulsed light source synchronus to trigger + random background from lamp



#### Goal

(for the future needs of COMPASS): operate up to 5MHz/pixel single photoelectron rates

no rate limitation from MAPMT



## MaPMT readout





### FE electronics: MAD cards + roof board

Based on MAD4 chip: Pre-amplifier + shaper + comparator

Low noise (connected to PMT): 5-7fC

>Average PMT signal: 1pC

≻Up to 1MHz/channel





**TORINO** 



## Digital readout electronics: DREISAM card





## **Readout electronics of 1 quarter**





#### A full detector



Data taking during Compass run 2006



## Installation





## Installation



**Milestones and Status** Preliminary studies up to October 2004 Project design: November 2004 – March 2005 > Material procurement and constructions: April 2005 - March 2006 > Assembly: April-May 2006 Ready for beam: June 2006 Characterization from data 2006 goin on > Next future upgrade: C-MAD project



## First look on 2006 RICH data





### Performances of the upgraded MaPMT RICH (2006 data, preliminary)

Number of photons per ring at saturation: 65 (before 14)

Time resolution:  $\approx$  1 ns (3 ms)

Ring resolution: 0.36 mrad (0.5 mrad)

Improved suppression of background from  $\mu$ -halo







## New PID performances





## Future upgrade: C-MAD

# CMAD, an upgrade of MAD4 chip for Compass Rich-1: characterization of the prototype

O. Cobanoglu, M. Chiosso, G. Mazza, D. Panzieri, A. Rivetti

**I.N.F.N & University of Torino** 



## **CMAD-V2 full size prototype**

> 8 channels full-custom Asic prototype

each single channel consists of:

- > a pre-amplifier with adjustable R-C feedback network
- > a shaper with baseline restorer
- a comparator with adjustable threshold
- programmable one-shot
- LVDS output driver







## **Efficiency at high rate**





## **Time Schedule**

**End of february**  $\rightarrow$  submission of the third prototype

**End of february – End of may**  $\rightarrow$  design and production of new front-end boards

**End of may**  $\rightarrow$  prototype delivering

**June**  $\rightarrow$  test of prototype chips mounted on new front-end boards

**June and July**  $\rightarrow$  full test of the prototype

**End of july**  $\rightarrow$  start of mass production

**End of october**  $\rightarrow$  delivery of whole production (chips and boards)

**november - december**  $\rightarrow$  mounting and testing

**January 2008**  $\rightarrow$  ready to install



## Thanks to many colleagues... The COMPASS RICH upgrade team:

P.Abbon(11), M.Alekseev(12), H.Angerer(9), M. Apollonio(13), R.Birsa(13), P.Bordalo(7), F.Bradamante(13), A.Bressan(13), L.Busso(12), M.Chiosso(12), P.Ciliberti(13), M.L.Colantoni(1), S.Costa(12), N.Dibiase(12), T.Dafni(11), S.Dalla Torre(13), V.Diaz(13), V.Duic(13), E.Delagnes(11), H.Deschamps(11), W.Eyrich(4), D.Faso(12), A.Ferrero(12), M.Finger(10), M.Finger Jr(10), H.Fischer(5), S.Gerassimov(9), M.Giorgi(13), B.Gobbo(13), R. Hagemann(5), D.von Harrach(8), F.H.Heinsius(5), R. Joosten(2), B.Ketzer(9), K.Königsmann(5), V.N. Kolosov(3), I.Konorov(9), D.Kramer(6), F.Kunne(11), S. Levorato(13), A.Maggiora(12), A.Magnon(11), A.Mann(9), A.Martin(13), G.Menon(13), A.Mutter(5), O. Nähle(2), D.Neyret(11), F.Nerling(5), P.Pagano(13), S.Paul(9), S.Panebianco(11), D.Panzieri(1), G.Pesaro(13), C. Pizzolotto(4), J. Polak(6), P.Rebourgeard(11), E. Rocco(13), F.Robinet(11), P.Schiavon(13), C.Schill\*(5), P.Schoenmeier(4), L.Silva(7), M.Slunecka(10), L.Steiger(10), F.Sozzi(13), M.Sulc(6), M.Svec(6), F.Tessarotto(13), A.Teufel(4), H. Wollny(5)

(1) ININ, Sezione di Torino and Universita' del East Piemonte, Alessandria, Italy

(2) Univer<del>sität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, German</del>y

(3) CERN, European Organization for Nuclear Research, Geneva, Switzerland

(4) Universität Erlangen–Nürnberg, Physikalisches Institut, Erlangen, Germany

(5) Universität Freiburg, Physikalisches Institut, Freiburg, Germany

(6) Technical University of Liberec, Liberec, Czech Republic

(7) LIP, Lisbon, Portugal

(8) Universität Mainz, Institut für Kernphysik, Mainz, Germany

(9) Technische Universität München, Physik Department, Garching, Germany

(10) Charles University, Praga, Czech Republic and JINR, Dubna, Russia

(11) CEA Saclay, DSM/DAPNIA, Gif-sur-Yvette, France

(12) INFN, Sezione di Torino and Universita' di Torino, Torino, Italy

(13) INFN, Sezione di Trieste and Universita' di Trieste, Trieste, Italy