Spin Physics with hadron beams @ COMPASS Marialaura Colantoni INFN Torino Congressino Torino 11-01-2008

COMPASS is a fixed target experiment at CERN

COMPASS

Beam:

Polarizati -80% on

Muons Hadrons (π, p/K) Intensity 2 10⁸ µ⁺/spill (4.8s, Max 2 10⁸ h/spill Momentu 1802 & (50 - 270) GeV/c

LHC

Marialaura Colantoni - INFN Torino Congressino 2008

- 2001 \rightarrow 2006 muon run with polarized (L,T) LiD target
- 2007 muon run with polarized (L,T) NH_3 target
- 2008 hadron run with liquid H₂

COMPASS contributes to the understanding of the physics of the nucleon

Marialaura Colantoni - INFN Torino Congressino 2008

The COMPASS Spectrometer

COMPASS 2006 upgrades

- New Solenoid magnet: Acceptance 70 mrad →180 mrad
- RICH upgrade: Central region MAPMT system
 - More photons
 - Improved S/N
 - Outer region sampling ADC
 - Improved S/N
- Other important upgrades: Large Drift Chamber
 RICHWall
 Full ECAL coverage

Trigger Marialaura Colantoni - INFN T

COMPASS 2008 hadron run

Beam: 190 GeV/c; $5 \cdot 10^6$ h/s; ~96% π^- , ~3.5% K⁻, $\overline{0.5}$ % p Data with π^- , K⁻ beams are collected in parallel

Marialaura Colantoni - INFN Torino Congressino 2008

COMPASS > 2010

- Boer Mulders Function
- Transversity
- Sivers Functions
- ...
- Deeply Virtual Compton scattering (DVCS) $\mu p \rightarrow \mu p \gamma$:
 - GPD functions

Distribution functions

3 independent structure functions describe the spin structure of the nucleon

transversity distribution

TMD quark DFs of Nucleon

actorization: Collins, Soper (81,82); Ji, Ma, Yuan (03, 04); Collins, Metz (04)

COMPASS DY : $\pi^{-}p^{+} \rightarrow \mu^{+}\mu^{-}X$

Use of single **polarized** Drell-Yan $\pi p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$ $SSA = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$

: azimuthal angle of the target spin vector wrt the lepton plane

COMPASS DY : $\pi^{-}p^{+} \rightarrow \mu^{+}\mu^{-}X$

Transversity:

$$A^{\sin(\phi+\phi_{S2})}(x_{\pi},x_{p}) = -\frac{1}{2} \frac{\sum_{q} e_{q}^{2} \left[\bar{h}_{1q}^{\perp(1)}(x_{\pi}) \cdot h_{1q}(x_{p}) + h_{1q}^{\perp(1)}(x_{\pi}) \cdot \bar{h}_{1q}(x_{p}) \right]}{\sum_{q} e_{q}^{2} \left[\bar{f}_{1q}(x_{\pi}) \cdot f_{1q}(x_{p}) + (x_{\pi} \leftrightarrow x_{p}) \right]}$$

Sivers:

$$A^{\sin(\phi-\phi_{S2})}(x_{\pi}, x_{p}) = 2 \frac{\sum_{q} e_{q}^{2} \left[\bar{f}_{1q}^{(1)}(x_{\pi}) \cdot f_{1T}^{\perp(1)}(x_{p}) + f_{1q}^{(1)}(x_{\pi}) \cdot \bar{f}_{1T}^{\perp(1)}(x_{p}) \right]}{\sum_{q} e_{q}^{2} \left[\bar{f}_{1q}(x_{\pi}) \cdot f_{1q}(x_{p}) + (x_{\pi} \leftrightarrow x_{p}) \right]}$$

$$f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS}$$
 Collins , P.L. **B536** (02)

Drell-Yan @ COMPASS

 $\pi p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$; $\pi p \rightarrow \mu^{+}\mu^{-}X$

Unique COMPASS environment:

- Intense (10⁸ h/spill) hadron beam
- Large acceptance polarized NH₃ target
- Trackers standing high rates
- Multipurpose spectrometer:
 - Advanced and flexible triggering system with the possibility to trigger on muons, electrons and hadrons
 - Good hadron/electron/muon identification
 - Large muon/electron acceptance
 - High capacity DAQ system
- COMPASS is a running experiment

COMPASS spectrometer layout

Kinematic range

Valence quarks region (x1, x2) > 0.1has to be covered

 $x_1 \rightarrow x$ -Bjorken of incoming quark $x_2 \rightarrow x$ -Bjorken of target quark √s → cm energy

$$0 < x_1 x_2 = \frac{M^2}{S} \le 1$$
 $Q^2 = M^2$

Enriched data sample at big Q²

M must be large enough to apply pQCD

$$E_{\pi-beam} = 50-160 \text{ GeV}$$

(evts/0.1 GeV/c²) 0 0

Hydrogen data

Very preliminary DY events estimation

- Target: two cells L_{NH3} =15 cm each
- Target material: NH₃
- Density of NH₃: $\rho_{NH3} = 0.85$ g/cm3
- PT material filling factor $F_f = 0.6$
- Number of nucleon in NH_3 molecule: $A_{NH3} = 17$
- π beam intensity: $I_{beam} = 2 \times 10^7$ h/s
- $N_A = 6.0 \times 10^{23} \text{ mol}^{-1}$

1.1×10³¹ cm⁻² s⁻¹

Marialaura Colantoni - INFN Torino Congressino 2008

Very preliminary DY events estimation

- Compass DY pairs reconstruction efficiency (acceptance included) : $A \approx 0.4$
- DY cross section on NH3: $\sigma_{\rm NH3} = N_{\rm nucl} \times \sigma_{\pi p}$, where $N_{\rm nucl} = 17$

- N_{spill} =4000 (number of spills per day),
- E_{sps} = 80% (efficiency of the machine)
- Duration of the Run 150 days: D_{RUN}=150

 $Rate = L \times N_{nucl} \times \sigma_{\pi p} \times A \times D_{spill} \times N_{spill} \times E_{SPS} \times D_{RUN}$

DY cross section and statistics

estimation for 150 days of running

S [GeV ²]	M (μ+μ-) [GeV]	M (μ+μ-) [GeV]
	2.5-4.	491
100	0.35 nb	enc Pro
200	0.65 nb	J.10 nb
300	0.78 nb	0.15 nb
S [GeV ²]		M (μ+μ-) [GeV]
	ICE 24.	49.
100	78500	6700
200	146000	22440
300	175000	33660

Cross section values were taken from AB_5 A.Bianconi generator cross-checked with PYTHIA data (A.Nagaytsev, Dubna), without I/Y contribution on gressino 2008 18

Expected statistical errors:

Assuming:

- the polarization of the NH3 target \rightarrow 85%
- target dilution factor $\rightarrow 3/17$
- $N_{tot.exp} \rightarrow 3.3 \cdot 10^4$ DY-events $\delta A \approx \frac{1}{P_T \times 10^4} \approx 3\%$

without taking into account uncorrelated background (depends on trigger selectivity)

Marialaura Colantoni - INFN Torino Congressino 2008

Drell-Yan Beam Test @ COMPASS, 11-12 November 2007

DY Beam Test, 11-12 November 2007

Important checks:

- Hadron beam intensity & new optics (160 GeV/c negative pion beam)
- Radiation conditions in the experimental hall with:
 - COMPASS Polarized Target (full length (1.20 m)~ 1 int.lenght);
 - operation with high intensity hadron beam: 2×10⁷ hadrons/spill
 - L ~10 31 cm⁻² s⁻¹ (~ equivalent to 10⁸ hadrons/spill on 0.25 int.lenght PT)
- COMPASS PT performance with the high intensity hadron beam
- COMPASS spectrometer performance with high intensity hadron beam
- J/Ψ event rates (good normalization for DY and background)
- Signal/Backgroundalevelaandutriggercrates 2008

- Very stable spectrometer and PT behaviour (only minor problems with few detectors)
- We are confident that we can run at luminosity of ~10³¹ cm⁻² s⁻¹ so that makes DY program feasible
 - 2.2×10⁷ h/spill and full size PT (1 int.length↔ 1.2 m)
 - 10⁸ h/spill and 0.25 of full PT (~0.3 m)
- Another crucial issue background level can be evaluated after data analysis (reconstruction of events in progress)

Time line

- Eol \rightarrow first quarter of 2008
- Lol \rightarrow by summer 2008
- COMPASS spectrometer upgrade preparation: 2009-2010
 - Muon trigger in LAS
 - Modification of the central part of ECal1
- First data with pion beam after 2010
- T6 line upgrade (antiproton and kaon beam): 2013-2014?

INTERNATIONAL WORKSHOP ON HADRON STRUCTURE AND SPECTROSCOPY 31th March - 2nd April 2008 www.iwhss08.to.infn.it

Many new technologies for tracking

and PID

Trigger-System

MicroMegas

GEM

Straws

Readout electronics^{Marialau} Richore adout^{no} CongreScintillating fiber trackers

Kinematic range

 $E_{\pi\text{-beam}} = 50\text{-}270 \text{ GeV}$ $x_1 \rightarrow x\text{-Bjorken of incoming quark}$ $x_2 \rightarrow x\text{-Bjorken of target quark}$ $x_1 x_2 = \frac{M^2}{S} \qquad Q^2 = M^2$

M must be large enough to apply pQCD But production rate falls off rapidly with M⁻⁴

M interval out of the resonances regions has to be selected (3.5 GeV/c² < M < 9.0 GeV/c²)

Valence quarks region (x1, x2) > 0.1 has to be covered

Marialaura Colantoni - INFN Torino Congressino Figure 1: Mass spectra of background and signal for p-p events. 2008

Dose rate measurements

Heinz Vincke

2.2×10⁷ hadrons per spill (supercycle time 20.4s)

No (additional) activation of beam line components was

