Studio dei raggi cosmici primari tra 10¹⁶ e 10¹⁸ eV con l'esperimento KASCADE-Grande

Federico Di Pierro per la Collaborazione KASCADE-Grande

Congressino di Sezione - Torino, 11 Gennaio 2008

KASCADE's results:

Main results keep stable independent of method or model:

- knee caused by light primaries
- positions of knee vary with primary elemental group
- no (interaction) model can describe the data consistently

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25, astro-ph/0505413

Congressino di Sezione - Torino, 11 Gennaio 2008

KASCADE-Grande = <u>KA</u>rlsruhe <u>Shower Core and Array DE</u>tector + Grande and LOPES

Measurements of air showers in the energy range $E_0 = 100 \text{ TeV} - 1 \text{ EeV}$

Congressino di Sezione - Torino, 11 Gennaio 2008

The experimental set-up

The strength of KASCADE-Grande is the multi observables information

Congressino di Sezione - Torino, 11 Gennaio 2008

The KASCADE Array

e/γ - detector (liquid scintillator)

- lead/iron absorber

-muon detector (plastic scintillator)

- 252 detectors
- 3.2 m² each
- 13 m distant
- 200 x 200 m²
- **e**/**γ** : liquid, 48 mm
- µ : plastic, 30 mm

Congressino di Sezione - Torino, 11 Gennaio 2008

KASCADE-Grande: the Grande array

37 stations (from EAS-TOP)
10 m² of plastic scintillators
140 m average distance
0.5 km² total surface

18 trigger cells of 7 stations rate $\simeq 0.5$ Hz efficiency $\simeq 1$, $E_0 > 2 \cdot 10^{16}$ eV

Congressino di Sezione - Torino, 11 Gennaio 2008

The detector stations

Measurements of:

- **timing**: TDC (CAEN V767) 0.8 ns (electronic resolution)
- amplitude: Peak-Sensing ADCs

PMTs:

16 High Gain (10 m²): range 1 = 0.03-8 particles/m² range 2 = 2-80 particles/m²

4 Low Gain (2.5 m²): range 3 = 20-800 particles/m²

Signal threshold = 0.3 particles

KASCADE-Grande : Reconstruction steps

- 1) core position and angle-of-incidence from Grande array data
- 2a) shower size (charged particles) from Grande array data
- **2b) muon number** from KASCADE muon detectors

- 3) electron number from Grande by subtraction of muon content
- 4) two dimensional size spectrum for the analysis

Single event lateral distributions

Congressino di Sezione - Torino, 11 Gennaio 2008

Mean lateral distribution

Congressino di Sezione - Torino, 11 Gennaio 2008

Lateral distribution (charged particles)

Shower size spectrum

Congressino di Sezione - Torino, 11 Gennaio 2008

Lateral distribution (muons)

Muon Number Spectrum

2-dimensional Ne-Nµ spectrum

Unfolding of 2-dimensional shower size spectrum possible → energy & composition

Congressino di Sezione - Torino, 11 Gennaio 2008

Large scale anisotropies

Anisotropy expected from diffusion leakage from Galaxy

Congressino di Sezione - Torino, 11 Gennaio 2008

Measuring radio emission from EAS @ KASCADE-Grande: LOPES

Congressino di Sezione - Torino, 11 Gennaio 2008

A bit of history....

K.-H. Kampert (The brightest radio source, the sun has 1MJy.)

 $1Jy = 10^{-26}Wm^{-2}Hz^{-1}$

Congressino di Sezione - Torino, 11 Gennaio 2008

Advantages of Radio Emission from Air Showers

- Cheap detectors, easy to deploy
- High duty cycle (24 hours/day minus thunderstorms)
- Low attenuation (can see also distant and inclined showers)
- Bolometric measurement (integral over shower evolution)
- Also interesting for neutrinos
- Potential problems:
 - Radio freq. interference (RFI)
 - size of footprint
 - correlation with other parameters unclear
 - only practical above ~10¹⁷ eV.

Congressino di Sezione - Torino, 11 Gennaio 2008

LOPES = LOfar PrototypE Station Question: LOFAR as Cosmic Ray Detector ? Auger with radio antenna array ? Needed: Calibration of the radio emission in air showers !

> -Detection threshold -Signal dependence on primary energy primary mass geomagnetic angle zenith angle -Lateral extension

➔ "known" air showers

well-calibrated air shower experiment

Congressino di Sezione - Torino, 11 Gennaio 2008

12:55

LOFAR

LOPES set-up

- Set up at the KASCADE-Grande site
- Frequency range of 40 – 80 MHz
- Triggered by large event trigger
- 10 antennas in the first phase,
 30 antennas in second phase

Goals:

- Develop techniques to measure the radio emission from air showers
- Determine the radiation mechanism of air showers
- Calibrate the radio data with theoretical and experimental values from an existing air shower array

Congressino di Sezione - Torino, 11 Gennaio 2008

The electronics

Congressino di Sezione - Torino, 11 Gennaio 2008

How it works - digitally

Congressino di Sezione - Torino, 11 Gennaio 2008

LOPES 10 :

Interplay of radio and particle measurements

search for maximum coherence **Event:** Φ= 302.18° $= 301.58^{\circ}$ $\theta = 41.01^{\circ}$ $= 40.61^{\circ}$ α = 57.91° $X_{c} = -142.85 \text{ m}$ = -137.85 m $Y_{c} = 40.27 \text{ m}$ = 30.28 m lg(E/eV) = 17.73ln(A) = 3.16curvature = 3250 m = 4250 m

A.Haungs

Congressino di Sezione - Torino, 11 Gennaio 2008

Radio signal vs muon number

Measured EAS, Falcke et al. Nature 435 (2005)

Congressino di Sezione - Torino, 11 Gennaio 2008

CONCLUSIONS

- KASCADE-Grande has been presented
- It's in continuous and stable data taking since Jan 2004
- Checks of shower observables show good data quality
- First Analysis have been reported

•The LOPES experiment and the "radio" technique have been presented