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Quark confinement in strong force

Still a puzzle after > 30 years and despite a number of approaches and ideas.
It is a million-dollar question, literally (Clay Mathematics Institute, 2000).

Lattice gauge theory (LGT) is the standard (nonperturbative) framework to
study the problem.

To get rid of hadronisation: ⇒ pure gauge theory (quark masses → ∞).

The gauge fields U` (with group G) live on the (3+1)-D lattice links `; the
(Euclidean) Wilson action [Wilson 1974]:

Z =
∑

cfg.

e−S , S =
∑

2

β
[

ReTrU2

]

; β ∝ 1

g2
, U2 = U`1 · · ·U`4 .

Any G is allowed, even if discrete (G = SU(3) gives QCD).
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Observables

Gauge-invariant observables: ordered products of links along closed loops γ.
In particular, with γ an R by T rectangle:

〈

W (R,T )
〉

=
〈

Tr
∏

i∈γ

U`i

〉

, Wilson loop

All open lines are not gauge-invariant observables, since the gauge
transformation is given by U` → Λ(x)†U`Λ(y), with ` =

〈

x, y
〉

.

Percolation and confinement - I. Introduction 2



Quark confinement on the lattice

The R × T loop represents a q − q̄ couple at a distance R for a time T
⇒ the interquark potential is

V (R) = − lim
T→∞

1

T
log

〈

W (R,T )
〉

• If V (R) ∼ σ · R, the system is confining (
〈

W (R,T )
〉

∝ exp(loop area))

• if σ = 0 there is deconfinement (
〈

W (R,T )
〉

∝ exp(loop perimeter))

⇒ σ (string tension) is an order parameter.
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Finite temperature and deconfinement

At finite temperature T , time becomes compact with length L ∝ 1/T .
W loses physical interest, and one reads σ from the Polyakov loop correlator :

〈P (0)P
†
(R)〉L ∝ exp(−σRL + · · · ) .

Polyakov loop: a path γ nontrivially wound around the time direction.

R

PSfrag replacements

Ls

L

At high enough T > Tc(β), the system deconfines. If second-order transition:

2 it behaves like a one-dimension-less spin model [Svetitsky, Yaffe 1982];

2 universality of quantities such as Tc√
σ
.

Actually, the above ratio (and other features) turn out to be almost
G-independent: there must be a simple common confining mechanism.
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Interpretations of confinement - I

In a given gauge configuration, there is a network of center vortices, extended
objects related to “singular gauge transformations”; a vortex gives a multiplicative
contribution to W (R, T ) if it pierces the loop, and there is confinement if the
vortex graph is structured in such a way that W (R,T ) decays with an area law.

Supporting facts:

• Experimental observation of center dominance.

• Sensitivity of finite-temperature observables to the center

of G.

Percolation and confinement - I. Introduction 5



Interpretations of confinement - II

The vacuum acts on the (chromo-)electric charges as a dual superconductor,
keeping all the flux between the sources squeezed in a string-like tube whose energy
is proportional to its length ⇒ linear growth of V (R).

A strong coupling expansion of
〈

W
〉

can be made in terms of string worldsheet
surfaces (bounded by the loop contour); this expansion fails for too weak couplings.

Indeed, since the physics takes place in the so-called rough phase (the string
fluctuates quantistically on any length scale), there are many all-new predictions
that can be tested on the lattice.
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String-like properties on the lattice

Expectation value of a loop W as a sum over string worldsheets with border
∂W . The rough fluctuations give subleading quantum corrections to the area
law, that can be tested on the lattice, e. g. (three dimensions):

W (R, R) ∝ R1/4e−σR2−2µR .

The Nambu-Goto action S ∝ worldsheet area [Goto 1971; Nambu 1974], with due corrections [Polchinski,

Strominger 1991; Hari Dass, Matlock 2006], leads to the universality of the first two orders in observables such as:

〈P (0)P
†
(R)〉L=1/T =

e
−cL−σRL−(D−2)π2L[2E4(τ)−E2

2(τ)]

1152σR3 +O(1/R5)

η(τ)D−2
; τ ≡ iL

2R
,

and in scaling laws as:

σ(L)
D=3
= σ− π

6L2
− π2

72σL4
+ O(1/L

6
) ; L =

1

T
, R → ∞ .

For this to work, the theory is assumed to flow to a massless bosonic free string in the infrared limit R → ∞ .
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From “simplest” to “even simpler”

Let’s start with the 3D Z2 theory, the simplest nontrivial gauge model:

• Kramers-Wannier duality transformation ⇒ 3D Ising model (one-to-one
mapping between observables and couplings in the two models).

• Fortuin-Kasteleyn reformulation for the Ising model, in terms of random clusters
of aligned sites.

• In this context, W (R,T ) is zero whenever a magnetised cluster is linked to
the loop, since this fact is incompatible with the Z2 unit flux running on the
loop contour.
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Random percolation as a gauge theory

Naive, simple extension of the above recipe, in which only the topological
properties are relevant: [Gliozzi, S. L., Panero, Rago: Nucl. Phys. B 719 (2005), 255]

• The lattice links are independently set to on or off according to probabilities
p and 1 − p: a random cloud of connected on clusters is formed.

• This is a critical system: there exist a value pcr at which an infinite connected
network appears (percolation threshold, second order critical point).

• Formally, this model has G ≡ {e} and Z ≡ 1 (no update algorithm!).

• We need observables sensitive only to the configuration topology (no dangling

ends, for instance), as some sort of gauge invariance.
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Wilson loops and confinement in random percolation

One is led to define the Wilson loop value W (C) in a given configuration C
as:

W = 1 if no clusters are linked to the loop ; W = 0 otherwise .

The definition is completely invariant under any transformation that does not alter the loop structure of the

configuration, as required.

p < pcr ⇒ finite-size clusters give the perimeter law ⇒ deconfinement

p > pcr ⇒ the infinite cluster can pierce W in any point of A ⇒ confinement:

p(0) =
“A

0

”

α0(1 − α)A−0 = exp
n

− σA
o

⇒ σ = − log(1 − α)
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Finite-temperature deconfinement in random percolation

At finite temperature T , the system is a 2D infinite slice with thickness ∝ 1/T :
the threshold probability pcr(T ) for the infinite cluster to appear is now a function
of T and follows two-dimensional scaling laws.

Since pcr(T ) is an increasing function of T , by keeping a fixed probability
pcr(0) < p < pcr(∞) and heating up the system, the infinite cluster at some point
Tcr vanishes away, leaving finite pieces that no longer give the area law to the
loop behaviour: this is precisely a finite temperature deconfinement transition.

The amplitude ratio Tcr/
√

σ is well defined, with scaling laws

σ(p) = S(p − pcr)
2ν

T = τ0(pcr(T ) − p3D
cr )ν
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Confined phase
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String tension from Wilson loops

First, we measured the quantity pcr(T ) for a variety of lattices and
temperatures, using the Newman-Ziff algorithm.

From the expectation values of rectangular loops, a fit to an area+perimeter
law can be tried,

〈

W (R,T )
〉

∝ exp[−σRT − p(R + T )] .

The agreement is, however, much better if one includes the Leading Order
correction coming from the string rough fluctuations:

〈

W (R,T )
〉

∝

√

η(i)
√

R

η(iT/R)
· exp[−σRT − p(R + T )]

η(τ) = (e2iπτ)1/24 Q∞
n=1

ˆ
1 − (e2iπτ)n˜

is the Dedekind eta function.
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String tension from Wilson loops

The values obtained for σ show, not too far from pcr(0), a good scaling
behaviour and allow to extrapolate the scaling amplitude S for each kind of
lattice:

SSC,site = 3.370(8) SSC,bond = 8.90(3) SBCC,bond = 22.07(2) . . .

The universal ratio Tcr/
√

σ ' 1.5 was calculated for seven different lattices and
temperatures: its universality was proven within errors.
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Polyakov-Polyakov correlators at critical temperature

Exactly at the critical point, the correlator between two Polyakov lines should
exhibit a power-law shape, whose exponent is fixed by the dimensionality and
universality class of the system.

Arguing that, at finite T , the system behaves according to 2D percolation
universality class, one can use an adapted version of the Svetitsky-Yaffe conjecture
to predict that:

〈

P (0)P (R)
〉

p=pcr(T )
∝ R− 5

24 .

From the measurement of such correlators, we could show that this expectation
is fulfilled.
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Pure gauge spectrum: glueballs

The plaquette-plaquette (zero-momentum projected) correlator shows a
multiple exponential decay ⇒ it couples to a whole tower of massive physical
states in the 0+ spin/parity channel.

Dihedral time-slice symmetry ⇒ operators can be constructed for each channel
with JP ∈ {0+, 0−, 2+, 2−, 1/3}.

A cross-correlation matrix is constructed with:

C(JP )
ij (t) =

(y−x)3=t
∑

x,y

[〈

O(JP )
i (x)O(JP )

i (y)
〉

−
〈

O(JP )
i

〉〈

O(JP )
j

〉]

and then diagonalised with C(t > t0)x = λt0(t)C(t0)x, to extract glueball masses
from each channel.
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Glueballs operators’ construction

Choosing operators in various symmetry classes, we constructed spin/parity
operators according to the dihedral character table:
{

}

{ }

{ }

{ }

{ }

{ }

0− −
`

−
´

+
`

−
´

`
− + −

´
+

`
− + −

´

2+ −
`

− + −
´

+
`

− + −
´

2− − + −
`

− + −
´
−

`
− + −

´

1/3

8
>><

>>:

−
−
−
−
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Glueballs, results [Giudice, Gliozzi, S. L.: PoS(LATTICE 2007) 314 (2007)]

• The 0+ lightest glueball shows good scaling.

• For each channel, the lowest state is easily recognizable: they follow the

expected hierarchy, and m0+

0 /
√

σ ' 4.46 (very close to the SU(2) value 4.7).

• By looking for the square operator which maximises the coupling, we estimated
the lowest scalar glueball size: its diameter turns out to be ∼ 0.24 fm .
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What is the underlying string theory?

Thanks to the high numerical precision attainable, from the Polyakov-Polyakov
correlators the finite-temperature σ(L) is extracted. [Giudice, Gliozzi, S. L.: PoS(LATTICE

2007) 314 (2007)]
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L
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σ-π/(6L

2
)-π2

/(72σL
4
)

stat. 10
5

p=0.272380
lattice 128

2
xL

• Not only the 〈PP 〉 is seen to follow the NLO
prediction:

σ(L) = σ − π

6L2
− π2

72σL4
| {z }

NLO

+
π3

Cσ2L6
| {z }

non−universal

+ O(1/L
8
) ;

• but in this system also the first model-dependent
correction was clearly identified (C ' 300).
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Universal functions as further signals of the rough phase
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String evidences in the universal large-distance behaviour of:

en2σW (R + n, R − n)

W (R, R)
→ f(t) =

v
u
u
t

η(i)
√

1 − t

η(i1+t
1−t)

,

with t = n
R .

At finite temperature, expected universality of the following ratio:

g(t) =
σ(T )

T 2
c

,

as a function of the reduced temperature t = Tc−T
Tc

.
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Some words on percolation algorithms . . .

All the measurements on the randomly-generated configurations involve looking for topological linking to some

closed line.

Before taking measures, however, the configuration is mapped to its
loop skeleton (“loop gauge”) via removal of dangling ends and bridges.

The cluster structure is constructed with the Hoshen-Kopelman
algorithm: each node has a parent node, up to the cluster’s root which
points to itself.

a cb

To evaluate winding numbers, a ±1 offset is associated to links dual to the loop surface in reconstructing

clusters.

In the special case of the 1 × 1 plaquette, this can be avoided if we are in the “loop gauge”.

A particularly optimised approach is implemented when (possibly a lot of) loops are to be measured in every

spatial position.
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Conclusions

• Percolation represents a well-defined gauge theory which retains all important
features notwithstanding its simplicity.

• The model provides clear evidences of a fluctuating string behaviour. In fact,
this is the only case in which the model-dependent features were identified, thus
providing an actual realisation of a consistent string theory à la Nambu-Goto.

• The high numerical performance in the system played a key role in supporting
the conjectures with extremely accurate “experimental” evidences.
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