Open charm mesons measurement in ALICE

Sergey Senyukov Universita di Torino, INFN Torino

In collaboration with: Elena Bruna, Francesco Prino, Massimo Masera

V Congressino di Sezione INFN, Torino, 11/01/2008

Physics motivation

Charm production: pp collisions

- Hard partonic processes (q-qbar annihilation, gluon fusion)
 - pQCD phenomenon taking place on short time-scale ($\approx 1/m_Q$)

Charm production: AA collisions

- Hard primary production in parton processes (pQCD)
 - Binary scaling for hard process yield:

$$\mathrm{d}N_{AA} / \mathrm{d}p_T = N_{coll} \times \mathrm{d}N_{pp} / \mathrm{d}p_T$$

- long lifetime of charm quarks allows them to live through the thermalization phase of the QGP and be affected by its presence
- Secondary (thermal) c-cbar production in the QGP
 - m_c (≈1.2 GeV) only 10%-50% higher than predicted temperature of QGP at the LHC (500-800 MeV)
 - Thermal yield expected much smaller than hard primary production

✓ can be observed if the pQCD production in A-A is precisely understood

Binary scaling break-up

✓ Anti-shadowing and shadowing

- k_T broadening (Cronin effect)
- Parton saturation (Color Glass Condensate)

Present also in pA (dA) collisions Concentrated at lower p_T

- Energy loss
 - ✓ Mainly by gluon radiation
- In medium hadronization
 - ✓ *Recombination vs. fragmentation*

Only in AA collisions Dominant at higher p_{τ}

Final state effects: energy loss

BDMPS formalism for radiative energy loss

Baier et al., Nucl. Phys. B483 (1997) 291)

average energy loss

Casimir coupling factor

distance travelled in the medium

transport coefficient of the medium

 $\alpha_{s} C_{R} q L^{2}$

- Energy loss for heavy flavours is expected to be reduced by:
 - Casimir factor
 - *ight hadrons originate predominantly from gluon jets, heavy flavoured hadrons originate from heavy quark jets*
 - \checkmark C_R is 4/3 for quark-gluon coupling, 3 for gluon-gluon coupling
 - Dead-cone effect
 - ✓ gluon radiation expected to be suppressed for $\theta < M_{Q}/E_{Q}$
 - Dokshitzer & Karzeev, Phys. Lett. **B519** (2001) 199
 - ^[] Armesto et al., Phys. Rev. D69 (2004) 114003

Experimental observables

Nuclear modification factor

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

• $R_{AA} \neq 1 \Rightarrow$ binary scaling violation

✓ Low p_T → main effect = nuclear shadowing
 ✓ High p_T → main effect = energy loss

RHIC results: non-photonic electrons

Nuclear modification factor

Charm in ALICE

Charm at the LHC (I)

	SPS	RHIC	LHC
√s (GeV)	17.2	200	5500
N _{cc}	≈ 0.2	≈10	≈100-200
x (at y=0)	≈ 10-1	≈ 10-2	≈ 10-4

Large cross-section

Much more abundant production with respect to SPS and RHIC

$$\sigma_{LHC}^{c\bar{c}} \approx 10 - 20 \times \sigma_{RHIC}^{c\bar{c}}$$

Small x

$$x_{1} = \frac{A_{1}}{Z_{1}} \frac{M_{c\bar{c}}}{\sqrt{s_{pp}}} e^{y_{c\bar{c}}} \qquad x_{2} = \frac{A_{2}}{Z_{2}} \frac{M_{c\bar{c}}}{\sqrt{s_{pp}}} e^{-y_{c\bar{c}}}$$

- unexplored small-x region can be probed with charm at low $p_{\rm T}$ and/or forward rapidity
 - ✓ down to $x\sim 10^{-4}$ at y=0 and $x\sim 10^{-6}$ in the muon arm

Charm at the LHC (II)

- p-p collisions
 - Test of pQCD in a new energy and x regime
 - Reference for Pb-Pb (necessary for R_{AA})
- p-Pb collisions
 - Probe nuclear PDFs at LHC energy
 - Disentangle initial and final state effects
- Pb-Pb collisions
 - Probe the medium formed in the collision
- WARNING: pp, pPb and PbPb will have different √s values
 - Need to extrapolate from 14 TeV to 5.5 TeV to compute R_{AA}

✓ Small (≈ 10%) theoretical uncertainty on the ratio of results at 14 and 5.5 TeV

Charmed mesons and baryons

- Weakly decaying charm states
 - Mean proper length \approx 100 μm
- Main selection tool: displacedvertex
 - Tracks from open charm decays are typically displaced from primary vertex by ≈100 µm
 - Need for high precision vertex detector (resolution on track impact parameter ≈ tens of microns)

Meson	Mass (MeV)	cτ (μm)
$D^+(c\overline{d})$	1869	312
$D^0(c\overline{u})$	1865	123
$D_s^+(c\overline{s})$	1968	147
$\Lambda_{c}^{+}(udc)$	2285	60
$\Xi_c^+(usc)$	2466	132
$\Xi_c^0(dsc)$	2472	34
$\Omega_c^0(ssc)$	2698	21

Heavy-flavours in ALICE

ALICE channels:

- electronic (|η|<0.9)
- muonic (-4<η<-2.5)
- hadronic (|η|<0.9)

ALICE coverage:

- $low-p_T$ region
- central and forward rapidity regions
- Precise vertexing in the central region to identify D ($c\tau \sim 100-300 \mu$ m) and B ($c\tau \sim 500 \mu$ m) decays

Time Projection Chamber and Time Of Flight

- TPC Provides:
 - Many 3D points per track
 - Tracking efficiency > 90%
 - + Particle identification by dE/dx
 - ✓ in the low-momentum region
 ✓ in the relativistic rise

• TOF Provides:

pion, Kaon identification (with contamination <10%) in the momentum range 0.2-2.5 GeV/c

proton identification (with contamination <10%) in the momentum range 0.4-4.5 GeV/c

D mesons simulation and reconstruction

D mesons: hadronic decays

Most promising channels for exclusive charmed meson reconstruction

Meson	Final state	# charged bodies	Branching Ratio	
	\rightarrow K ⁻ π ⁺	2 3.8%		
Do			Total	7.48%
	\rightarrow K ⁻ $\pi^+\pi^+\pi^-$	4	Non resonant	1.74%
			$D^{0} \rightarrow K^{-}\pi^{+}\rho^{0} \rightarrow K^{-}\pi^{+}\pi^{-}$	6.2%
D⁺	$\rightarrow K^{-}\pi^{+}\pi^{+}$	3	Total	9.2%
			Non resonant	8.8%
			$D^+ \rightarrow Kbar^{0*}(892)\pi^+ \rightarrow K^-\pi^+\pi^+$	1.29%
			$D^* \rightarrow Kbar^{0*}$ (1430) $\pi^+ \rightarrow K^- \pi^+ \pi^+$	2.33%
			Total	4.3%
D_{s}^{+}	$\rightarrow K^+K^-\pi^+$	3	$D_{s}^{+} \rightarrow K^{+}Kbar^{0*} \rightarrow K^{+}K^{-}\pi^{+}$	2.0%
			$D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$	1.8%

D mesons in central barrel

- No dedicated trigger in the central barrel → extract the signal from Minimum Bias events
 - Large combinatorial background (benchmark study with dN_{ch}/dy = 6000 in central Pb-Pb!)
- SELECTION STRATEGY: invariant-mass analysis of fullyreconstructed topologies originating from displaced vertices
 - build pairs/triplets/quadruplets of tracks with correct combination of charge signs and large impact parameters
 - particle identification to tag the decay products
 - calculate the vertex (DCA point) of the tracks
 - good pointing of reconstructed D momentum to the primary vertex

$D^0 \rightarrow K^-\pi^+$: selection of candidates

With $dN_{ch}/dy = 3000$ in Pb-Pb, S/B larger by $\times 4$ and significance larger by $\times 2$

Motivation to study other mesons (D_s & D⁺)

- To measure charm yield more precisely we need to measure as many channels as we can
- Study of different ways of hadronization:
 - String fragmentation:
 D_s⁺ (cs) / D⁺ (cd) ~ 1/3
 - Recombination:

 $D_{s^{+}}(cs) / D^{+}(cd) \sim N(s)/N(d) (\sim 1 \text{ at LHC?})$

 $D^+ \rightarrow K^-\pi^+\pi^+\nu s$, $D^0 \rightarrow K^-\pi^+$

Advantages

- D^{\star} has a longer mean proper length (ct ~312 μ m compared to ~123 mm of the D^{o})
- $D^+ \rightarrow K^- \pi^+ \pi^+$ has a larger branching ratio (9.2% compared to 3.8% for $D^0 \rightarrow K^- \pi^+$)
- Possibility to exploit the resonant decay through Kbar^{0*} to enhance S/B

Drawbacks

- Larger combinatorial background (3 decay products instead of the 2 of the $D^o \rightarrow K^-\pi^+$)
- Smaller $\langle p_T \rangle$ of the decay products (~ 0.7 GeV/c compared to ~ 1 GeV/c of the D^o decay products)
- D⁺ less abundant than D⁰ (factor 2-3)

D⁺ final selection steps (I)

- Four selection variables:
 - Distance between primary and secondary vertex (d_{PS})
 - cosθ_{point}
 - Sum of squared impact parameters $s = d_{01}^{2} + d_{02}^{2} + d_{03}^{2}$
 - Max. p_T among the 3 tracks
 p_M=Max{p_{T1},p_{T2},p_{T3}}

D⁺ **Results: PbPb** (I)

- Significance and relative statistical error vs. $D^{\scriptscriptstyle +}$ $p_{\scriptscriptstyle T}$
 - S/ev~10⁻³, B/ev ~10⁻⁴
 - Significance and relative statistical error (=1/ $\!\sqrt{}$ S) normalized to 107 central PbPb events

D⁺ Results: pp (I)

- Significance and relative statistical error vs. $D^{\scriptscriptstyle +} \, p_{\scriptscriptstyle T}$
 - S/ev~5 10⁻⁶, B/ev ~5 10⁻⁶
 - Significance and relative statistical error (=1/ $\!\!\sqrt{}$ S) normalized to 10° pp Minimum Bias events

 $D_{c}^{+} \rightarrow K^{+}K^{-}\pi^{+} \quad vs. \ D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$

Advantages

- Smaller combinatorial background if particle identification is efficient (kaons are less abundant than pions)
- Larger fraction of $D_{s^+} \rightarrow K^+ K^- \pi^+$ from resonant decays (through KbarO* or ϕ) with respect to D⁺

Drawbacks

 D_{s}^{+} has a smaller mean proper length (ct =147 μm compared to 312 μm of the D^+)

D_s⁺ → K⁺K⁻ π ⁺ has a smaller Branching Ratio (4.3%) with respect to D⁺ → K⁻ π ⁺ π ⁺ (BR=9.2%)

D_s: Resonances channels separation

- Calculation of the invariant mass of the KK and Kπ pairs
- Comparing them to m(φ) and m(KO*)

0

D_s: Final triplet multicut (under development)

• 4 variables

- Cosine of pointing angle
- Cosine of opening angle
- Sum of impact parameters squared
- Distance between primary and secondary vertex

Perspective for D^o D⁺ energy loss

 $D^{0} \rightarrow K^{-}\pi^{+} : R_{AA}$

- 1 year at nominal luminosity
 - 1 month \rightarrow 10⁷ central Pb-Pb events
 - 10 months \rightarrow 10⁹ pp events

$$R_{AA}^{D}(p_{t}) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}^{D} / dp_{t}}{dN_{pp}^{D} / dp_{t}}$$

- Statistical error bars from 10⁹ pp Min. Bias events and 10⁷ central PbPb events (1 year of data taking)
 - Statistical error smaller than the syst. errors up to 10 GeV/c

Mass (GeV/ c^2)

- Pseudorapidity coverage:
- Azimuthal coverage: •

Provides:

Rin

 $\mathsf{R}_{\mathsf{ext}}$

- pion, Kaon identification (with contamination) <10%) in the momentum range 0.2-2.5 GeV/c
- proton identification (with contamination <10%) $_{-2.5}$ in the momentum range 0.4-4.5 GeV/c

Charm production at the LHC

- ALICE baseline for charm cross-section and p_{τ} spectra:
 - NLO pQCD calculations (Mangano, Nason, Ridolfi, NPB373 (1992) 295.)

 \checkmark Theoretical uncertainty = factor 2-3

- Average between cross-sections obtained with MRSTHO and CTEQ5M sets of PDF
 - $\checkmark \approx 20\%$ difference in $\sigma_{\rm cc}$ between MRST HO and CTEQ5M
- Binary scaling + shadowing (EKS98) to extrapolate to p-Pb and Pb-Pb

	Pb-Pb	p-Pb	
System	(0-5% centr.)	(min. bias)	<i>pp</i>
√ <i>s</i> _{NN}	5.5 TeV	8.8 TeV	14 TeV
σ ^{cc} _{NN} w/o shadowing	6.64 mb	8.80 mb	11.2 mb
C _{shadowing} (EKS98)	0.65	0.80	1.
σ^{cc}_{NN} with shadowing	4.32 mb	7.16 mb	11.2 mb
N ^{cc} tot	115	0.78	0.16
D°+D°bar	141	0.93	0.19
D⁺+D⁻	45	0.29	0.06
$D_{s}^+ + D_{s}^-$	27	0.18	0.04
$\Lambda_{c}^{+}+\Lambda_{c}^{-}$	18	0.12	0.02

$D^{0} \rightarrow K^{-}\pi^{+}$: heavy-to-light ratios

I year at nominal luminosity

- 1 month \rightarrow 10⁷ central Pb-Pb events
- 10 months \rightarrow 10⁹ pp events

 $R_{D/h}(p_t) = R_{AA}^D(p_t)/R_{AA}^h(p_t)$

Perspective for D⁺ v_2

Motivation and method

- GOAL: Evaluate the statistical error bars for measurements of v_2 for D[±] mesons decaying in $K\pi\pi$
 - v_2 vs. centrality (p_T integrated)
 - v_2 vs. p_T in different centrality bins
- TOOL: fast simulation (ROOT + 3 classes + 1 macro)
 - Assume to have only signal
 - Generate $N^{D_{\pm}}(\Delta b, \Delta p_{\tau})$ events with 1 D[±] per event
 - For each event
 - □ Generate a random reaction plane
 - □ Get an event plane (with correct event plane resolution)
 - □ Generate the D^+ azimuthal angle (φ^D) according to the probability distribution $p(\varphi) \propto 1 + 2v_2 \cos \left[2(\varphi - \Psi_{RP})\right]$
 - **Since** Since φ^{D} with the experimental resolution on D^{\pm} azimuthal angle
 - \Box Calculate $v'_2(D^+)$, event plane resolution and $v_2(D^+)$

D[±] statistics

b _{min} -b _{max} (fm)	σ (%)	N _{events} (10 ⁶)	N _{cc} / ev.	D [±] yield/ev.
0-3	3.6	0.72	118	45.8
3-6	11	2.2	82	31.8
6-9	18	3.6	42	16.3
9-12	25.4	5.1	12.5	4.85
12-18	42	8.4	1.2	0.47

- N_{events} for 2.107 MB triggers
- N_{cc} = number of c-cbar pairs
 - MNR + EKS98 shadowing
 - Shadowing centrality dependence from Emelyakov et al., PRC 61, 044904
- D[±] yield calculated from N_{cc}
 - Fraction N^{D±}/N_{cc} (≈0.38) from tab. 6.7 in chapt. 6.5 of PPR
 - Geometrical acceptance and reconstruction efficiency
 - Extracted from 1 event with 20000 D[±] in full phase space
 - B. R. $D^{\pm} \rightarrow K\pi\pi = 9.2$ %

Selection efficiency

- No final analysis yet
- $1 = 1 = 1 = 0 \quad (a = 0 = 0)$

Event plane resolution scenario

• Event plane resolution depends on v_2 and multiplicity

Results: v₂ vs. centrality

- Would be larger in a scenario with worse event plane resolution
- May prevent to draw conclusions in case of small anisotropy of D mesons

Results: v_2 vs. p_T

2.107 MB events

Worse resolution scenario

Low multiplicity and low v2

• Huge number ($\approx 10^{10}$) of combinatorial K $\pi\pi$ triplets in a central event

• $\approx 10^8$ triplets in invariant mass range 1.84 (M(1.90 GeV/c²)) (D[±] peak ± 3 σ)

✓ Final selection cuts not yet ready

- Signal almost free from background only for p_T>5-6 GeV/c
- Need to separate signal from background in v₂ calculation
- FIRST IDEA: sample candidate $K\pi\pi$ triplets in bins of azimuthal angle relative to the event plane ($\Delta \varphi = \varphi \Psi_2$)
 - Build invariant mass spectra in bins of $\Delta \phi$ and centrality / p_{τ}

Analysis in bins of $\Delta \varphi$ (II)

• Fit number of D[±] vs. $\Delta \phi$ with A[1 + 2v₂cos(2 $\Delta \phi$)]

Other ideas for background

Different analysis methods to provide:

- Cross checks
- Evaluation of systematics
- Apply the analysis method devised for Λs by Borghini and Ollitrault [PRC 70 (2004) 064905]

 $N_{\text{pairs}}(M) = N_b(M) + N_{\Lambda}(M). \longrightarrow N_{\text{pairs}}(M)v_{c,n}(M) = N_b(M)v_{c,n}^{(b)}(M) + N_{\Lambda}(M)v_{c,n}^{\Lambda},$ $N_{\text{pairs}}(M)v_{s,n}(M) = N_b(M)v_{s,n}^{(b)}(M) + N_{\Lambda}(M)v_{s,n}^{\Lambda}.$

- To be extended from pairs (2 decay products) to triplets (3 decay products)
- Extract the cos[2(φ - Ψ_{RP})] distribution of combinatorial K $\pi\pi$ triplets from:
 - Invariant mass side-bands
 - Different sign combinations (e.g. $K^{\dagger}\pi^{\dagger}\pi^{\dagger}$ and $K^{-}\pi^{-}\pi^{-}$)

Conclusions on v₂

- Large stat. errors on v_2 of $D^{\pm} \rightarrow K\pi\pi$ in 2.107 MB events
- How to increase the statistics?
 - Sum $D^0 \rightarrow K\pi$ and $D^{\pm} \rightarrow K\pi\pi$
 - ✓ Number of events roughly $\times 2 \rightarrow$ error bars on v_2 roughly $/ \sqrt{2}$
 - ✓ Sufficient for v_2 vs. centrality (p_T integrated)
 - Semi-peripheral trigger
 - \checkmark v₂ vs. p_T that would be obtained from 2.10⁷ semi-peripheral events (6<b<9)

p _T limits	$N(D^{\pm})_{sel}$	σ (v ₂)
0-0.5	645	0.03
0.5-1	1290	0.02
1-1.5	1800	0.017
1.5-2	1650	0.018
2-3	2470	0.015
3-4	1160	0.02
4-8	1225	0.02
8-15	220	0.05

Glauber calculations (I)

• N-N c.s.:

 $\sigma_{NN}^{inel} = 60 \, mb$ $\sigma_{NN}^{c\bar{c}} = 6.64 \, mb$

- σ^{cc} from HVQMNR
- + shadowing
- Pb Woods-Saxon

$$\rho(r) = \frac{\rho_0}{1 + e^{\frac{r - r_0}{d}}}$$

$$\rho_0 = 0.16 \ fm^{-3}$$

$$r_0 = 6.624 \ fm$$

$$d = 0.549 \ fm$$

Glauber calculations (II)

- N-N c.s.: $\sigma_{NN}^{inel} = 60 \, mb$ $\sigma_{NN}^{c\bar{c}} = 6.64 \, mb$
 - σ^{cc} from HVQMNR
 - + shadowing
- Pb Woods-Saxon

$$\rho(r) = \frac{\rho_0}{1 + e^{\frac{r - r_0}{d}}}$$

$$\rho_0 = 0.16 \ fm^{-3}$$

$$r_0 = 6.624 \ fm$$

$$d = 0.549 \ fm$$

Shadowing parametrization

¹ Eskola et al., Eur. Phys. J C 9 (1999) 61.

Emel'yanov et al., Phys. Rev. C 61 (2000) 044904.

Effect of charm mass at the LHC

- At t=0: geometrical anisotropy (almond shape), momentum distribution isotropic
 - Interaction among consituents generate a pressure gradient which transform the initial spatial anisotropy into a momentum anisotropy
 - Multiple interactions lead to thermalization → limiting behaviour = ideal hydrodynamic flow
 - The mechanism is self quenching
 - The driving force dominate at early times
 - Probe Equation Of State at early times

$\frac{dX}{d\varphi} = \frac{X_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + \frac{v_2}{v_2} \cos(2(\varphi - \Psi_{RP})) +)$

"Glauber" calculations

Optical approximation

Czyz and Maximon, Annals Phys. 52 (1969) 59.

Nucleus thickness
functions
$$T_{A}(\vec{s}) = \int_{-\infty}^{\infty} \rho_{A}(\vec{s}, z_{A}) dz_{A} T_{B}(\vec{s} - \vec{b}) = \int_{-\infty}^{\infty} \rho_{B}(\vec{s} - \vec{b}, z_{B}) dz_{B}$$
Nucleus-nucleus
thickness function
$$T_{AB}(\vec{b}) = \int T_{A}(\vec{s}) T_{B}(\vec{s} - \vec{b}) ds^{2}$$
Nucleon-nucleon
collision probability
$$P(1, \vec{b}) = T_{AB}(\vec{b}) \sigma_{in} \rightarrow P(n, \vec{b}) = {AB \choose n} (T_{AB}(\vec{b}) \sigma_{in})^{n} (1 - T_{AB}(\vec{b}) \sigma_{in})^{AB-n}$$

Part =
$$\int \{A T_A[1 - (1 - \sigma_{in} T_B)^B] + B T_B[1 - (1 - \sigma_{in} T_A)^A]\} ds^2$$

$$\rightarrow$$
 Coll = A B T_{AB} σ_{in}

Event plane simulation

• Simple generation of particle azimuthal angles (ϕ) according to a probability distribution

$$\frac{dN}{d\boldsymbol{\varphi}} = 1 + 2v_2 \cos(\boldsymbol{\varphi} - \boldsymbol{\Psi}_{RP})$$

- Faster than complete AliRoot generation and reconstruction
- Results compatible with the ones in PPR chapter 6.4

